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ABSTRACT 
Overview: In the recent years, a bi-directional association between Alzheimer’s Disease (AD) 

and epilepsy has been observed, with AD-like cognitive impairments often presenting in 

epilepsy patients, and high rates of epileptic seizures seen in a sub-set of AD patients. These 

seizure-prone AD patients reportedly show accelerated cognitive decline and more aggressive 

disease progression compared to those without seizures. The mechanism and primary mode of 

action of this association remains unknown, although a synergistic interaction has been 

proposed. The general aim of this doctoral research was to investigate the electrical and 

molecular properties of the above-mentioned pathophenotypes and elucidate the mechanisms 

underlying the potential synergy between AD-like amyloid pathology and epileptiform activity, 

and their role in accelerated cognitive decline.  

Introduction and literature review: The introductory sections of Chapter 1 provide an 

overview of the current literature on epilepsy and Alzheimer’s Disease, focusing on 

pathophysiological mechanisms commonly implicated in both syndromes. The subsequent 

sections discuss several benchmark studies that first reported on the increased co-occurrence 

of seizures among AD patients, followed by a critical review of the most prominent as well as 

recently emerged hypotheses that aim to provide mechanistic insight into the nature of the 

proposed bi-directional association between AD and acquired epilepsy. The concluding 

sections provide a gentle introduction into the emerging field of network medicine, systems-

based analysis, interrogation methods of high-throughput biological data and the general 

framework of computational models and methodology that was implemented throughout this 

work.  

Experimental chapters: The first and second experimental chapters aim to characterize the 

molecular signature of a brain affected by amyloid pathology and seizures. Utilizing proteomic 

and metabolomic data from two collaborative studies as well as publicly available 

transcriptomic data, Chapter 2 describes the molecular signature of human AD and that of most 

widely used mouse models of AD, while Chapter 3 captures the molecular profile of well-

established rat models of genetic (GAERS) and acquired (post SE) epilepsies. Informed by the 

insight gained from Chapters 2 and 3, the third experimental chapter (Chapter 4) aimed to 

capture the shared molecular signature associated with AD and temporal lobe epilepsy (TLE) 

– the most common type of epilepsy comorbid with AD. A hypothesis-free, systems-level 
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approach was used to characterize the pathophysiological state of each disease on a molecular 

level by constructing data-driven gene coexpression networks representing the respective 

pathologies. The topology and architecture as well as the preservation of functional gene 

modules between the two networks were compared through network preservation analysis, 

identifying two clusters of synaptic reorganization and signalling-associated genes as highly 

preserved between AD and TLE. The fourth and final experimental chapter (Chapter 5) aims 

to investigate the mechanism and potential mediators of the bi-directional relationship between 

amyloid pathology and epilepsy by examining the effect of recurrent seizures on hallmark 

features of AD pathology such as amyloid plaque deposition and cognitive performance. RNA 

sequencing and bioinformatic analysis of mouse hippocampal tissue was conducted in order to 

investigate the molecular mechanisms of synergy between recurrent seizures and already-

present AD pathology as well as identify key mediators of accelerated disease progression, 

which could serve as promising targets for intervention.  

Discussion and conclusions: Informed by computational analysis from chapters 2, 3 and 4, 

and reinforced by experimental evidence from chapter 5, the final chapter of this thesis 

(Chapter 6) provides a synthesis of the newly gained insights into the strong synergistic nature 

of the relationship between amyloid pathology and recurrent seizures. A subsequent extensive 

review of the most current molecular neuroscience research facilitated interpretation of our 

results, leading to the proposal of a “dual-pathology” disease model for epilepsy and AD. In 

this paradigm, the synergistic self-propagating interaction between epileptiform activity and 

amyloid pathology defines a distinct subpopulation of  “dual-pathology” patients, characterized 

by faster disease progression and more severe cognitive decline. Furthermore, I describe 

specific cellular pathways mediating the synergy between amyloid pathology and recurrent 

seizure activity and introduce a mechanistic framework underlying the chain of events through 

which this synergy leads to accelerated cognitive deterioration. Each step in this framework or 

chain of events is reinforced by a benchmark proof-of-concept study published in leading peer-

reviewed journals and which, with the exception of the most recent 2022-2023 studies, have 

been independently replicated by other research groups. The concluding sections of this chapter 

emphasize the utility of integrating phenotypic and electroencephalographic data from in vivo 

studies with high-throughput “omics” data into network-based computational models for a 

holistic examination of pathophysiological mechanisms underlying complex diseases and 

identification of novel therapeutic targets. 
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PREFACE 
This PhD work was conducted in collaboration with our colleagues at Monash University 
Central Clinical School and Alfred Hospital. Chapters 3 and 4 of this thesis are based on 
published articles listed in the table below, of which I am the sole primary author and have 
contributed towards more than 50% of the work. The contributions of all co-authors are detailed 
in the table below. 

Chapter 2 (unpublished material not submitted for publication) 

The transcriptomic data constituting the basis for the analyses described in Chapter 2 was 
sourced from a publicly available repository (Gene Expression Omnibus, (Clough & Barrett, 
2016)) with accession numbers and corresponding publications listed in the main text.  

Chapter 3 (published material included)  

The proteomic and metabolomic data constituting the basis for the analyses described in 
Chapter 3 was generated from two large collaborative studies jointly created by Dr. Pablo 
Casillas Espinosa and Prof. Terence O’Brien. In all experiments involving GAERS animals, 
the live animal work was conducted by Pablo Casillas Espinosa with assistance from Zahra Ali. 
In experiments involving post-SE-TLE rats, the live animal work was conducted by Pablo 
Casillas Espinosa with assistance from Cristal Li and Emma Braine. The automatic seizure 
detection algorithm described in section 3.2.4. was developed by Rui Li. Additionally, this 
chapter includes parts of my original work, that have been incorporated into a collaborative 
publication by Pablo Casillas Espinosa, which is currently under review. In all instances, the 
reported results, including all figures and text were generated by me. 

Chapter 4 (published material included) 

The transcriptomic data constituting the basis for the analysis described in this chapter and the 
corresponding publication was sourced from a publicly available repository (Gene Expression 
Omnibus, (Clough & Barrett, 2016)) with accession numbers and corresponding publications 
listed in the main text.  

Chapter 5 (unpublished material not submitted for publication) 

The findings reported in this chapter will serve as the basis for a publication which is currently 
in preparation and will be submitted to Cell Systems. All findings were generated by me, 
including the in vivo and in vitro experiments, data analysis, creation of figures and graphs, 
interpretation of results and writing of the original manuscript. 
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Published 
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Harutyun
yan et al., 
2022) 

>70% 
 
 

methodology, 
software, formal 

analysis - 
metabolomics, 

proteomics (with 
assistance from 
Debbie Chong) 

integrated multi-
omic network 

analysis, 
statistical analysis 

of behavioural 
data, figure 
preparation, 

interpretation of 
results, writing 

and editing of the 
original 

manuscript 
 

Debbie Chong: input towards proteomics 
analysis, input towards manuscript; Rui Li: EEG 

data analysis; Anup D. Shah: technical 
consulting (proteomics and metabolomics); 

Zahra Ali: assistance with live animal 
experiments; Cheng Huang: technical consulting 
(proteomics); Christopher K. Barlow: raw data 

acquisition and technical consulting 
(metabolomics), input towards methods section 

of the manuscript; Piero Perucca, Terence J. 
O’Brien and Nigel C. Jones: expertise and 

consulting (GAERS model, absence epilepsy); 
Ralf Schittenhelm: input towards 

conceptualisation, technical consulting 
(proteomics); Alison Anderson: 

conceptualisation, supervision, expertise towards 
software and methodology, interpretation of 
results, review and editing of manuscript, co-

senior author; Pablo Casillas-Espinosa: 
conceptualisation, funding acquisition, 

supervision of live animal work, review and 
editing of manuscript, co-senior and 

corresponding author 

Chapter 4 
Network preservation 

analysis reveals 
dysregulated synaptic 

modules and regulatory 
hubs shared between 

Alzheimer’s Disease and 
temporal lobe epilepsy 

Published 
(Harutyu
nyan, 
Jones, 
Kwan, & 
Anderson
, 2022) 

>90% 
conceptualization, 

methodology, 
data mining,  

formal analysis, 
figures,  

interpretation of 
results, writing 

and editing of the 
original 

manuscript 

Nigel C. Jones: review and editing of the 
manuscript; Patrick Kwan: review and editing of 

the manuscript; Alison Anderson: provided 
expertise regarding methodology, 

conceptualization and interpretation of results, 
senior and corresponding author 

Chapter 5 
Investigating the 
synergy between 

amyloid pathology and 
recurrent seizures in the 

5xFAD model of 
Alzheimer’s Disease 

Manuscri
pt in 
preparatio
n 

>90% 
conceptualization, 

in vivo and 
molecular 

experiments, 
imaging, RNAseq 
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analysis, 

interpretation of 
results, writing 

the original 
manuscript 

Samantha L.W. Warren: assistance with 
microscopy/imaging; 

Alison Anderson: conceptualization, 
supervision, expertise in RNAsequencing, 

interpretation of results; review and editing of 
manuscript; 

Patrick Kwan: conceptualization, supervision, 
review and editing of manuscript 

Nigel C. Jones: conceptualization, supervision, 
review and editing of manuscript 
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CHAPTER 1 
 
ALZHEIMER’S DISEASE AND EPILEPSY: A CRITICAL REVIEW 
OF THE LITERATURE 

1.1 Alzheimer’s Disease 
Alzheimer’s disease (AD) is the most common form of dementia and is characterised by a 

chronic and progressive loss of memory, changes in personality and deficits in specific 

cognitive domains. With the increase in life expectancy and aging population, AD is enroute 

to become the second leading cause of death globally, predicted to affect around 130 million 

people by 2050. In Australia and several other high-income countries (England, Wales, 

Scandinavia) dementia including AD is already the leading cause of death for women and 

people aged over 85 (Australian Bureau of Statistics 2019, UK office for National Statistics 

2018). In 1906 professor Alois Alzheimer first described AD as “a peculiar disease”,  referring 

to then mysterious, and now – infamous, plaques and tangles, that he observed in the brain of 

his patient Auguste, but was unable to determine whether they were the root cause of her 

disease, or merely a by-product (Alzheimer, Forstl, & Levy, 1991). More than a century later, 

with dementia epidemic looming over the globally aging population, the question regarding 

the role of amyloid beta in the pathophysiology of AD remains as relevant as ever, though 

without a definitive answer. Nevertheless, amyloid plaques and their main component, the Aβ 

peptides, are the most described pathological hallmarks of AD, with the long-awaited 

encouraging results from a phase 3 clinical trial of anti-amyloid antibody (van Dyck et al., 

2022) and its subsequent approval by the FDA, we are closer than ever towards the first disease-

modifying treatment for AD. The immense efforts towards development and testing of amyloid 

clearing agents that lead to this breakthrough were largely motivated by the amyloid cascade 

hypothesis, originally proposed by Hardy and Higgins (Hardy & Higgins, 1992). This 

hypothesis established the neurotoxic aggregates of amyloid beta (Aβ) – a fragment of amyloid 

precursor protein (APP), as the root cause for pathology development, thus defining the 

conceptual landscape of Alzheimer’s research for decades, following its publication in 1992. 

In this linear causality paradigm, specific mutations at the cleavage sites of APP result in its 

amyloidogenic cleavage by b and g-secretases, leading towards the accumulation of Aβ inside 

the neurons as well as in the extracellular space, and its subsequent aggregation into protofibrils 

and amyloid plaques (Figure 1.1).  
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The amyloid cascade hypothesis also provides a mechanism by which amyloid pathology is 

linked to the formation of the second pathological hallmark of AD – the intracellular 

neurofibrillary tangles (NFT). In 1976, utilizing the most advanced electron microscopy and 

biochemical technique of the time, Robert Terry and colleagues characterized the structure of 

NFT, describing them as a “twisted tubule” or a “strange double-helical filament” similar to 

DNA (Wisniewski, Narang, & Terry, 1976). From the subsequent studies it was evident that 

these NFT are accumulations of aggregated tau protein. Tau is a microtubule associated protein, 

coded by the MAPT gene, which, under normal physiological conditions acts as a stabilising 

structure of microtubule, thus facilitating intracellular transport pathways. Pathological 

hyperphosphorylation of tau causes it to detach from the microtubules, thereby destabilizing 

the cytoskeleton and disrupting normal intracellular transport. The hyperphosphorylated tau 

forms filamentous aggregates, which accumulate inside the neurons as the infamous 

neurofibrillary tangles, resulting in the breakdown of normal cellular processes and subsequent 

death of neurons.  

 

Figure 1.1 Amyloid precursor protein processing by secretases. A summary depiction of 
amyloidogenic (abnormal) and non-amyloidogenic cleavage of amyloid precursor protein (APP). This 
abnormal cleavage result in the formation of a sticky neurotoxic A-beta which then gets accumulated 
as plaques in the extracellular space. The figure was created with Biorender.com  
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The amyloid cascade hypothesis provides an elegant and self-evident model which describes 

the chain of events underlying familial or early onset Alzheimer’s disease (FAD or EOAD). 

However, the majority (over 99%) of AD cases are sporadic in nature and don’t involve any 

mutations in the APP gene or its cleavage enzymes. This sporadic type of AD, which is also 

referred to as late-onset AD (LOAD), still features amyloid deposition, synaptic loss and 

cognitive impairments seen in patients with autosomal dominant mutations, but  usually 

presents later in life. Several earlier gene-wide association studies (GWAS) identified the e4 

allele of apolipoprotein E as a strong risk factor for developing sporadic AD, while possession 

of the e2 allele seems to be protective against AD (Saunders et al., 1993; Strittmatter et al., 

1993). Apoe, an important apolipoprotein, has been primarily studied for its role transporting 

cholesterol and other fats within the brain and the periphery.  

While amyloid plaque deposition and neurofibrillary tangles correlate with cognitive 

impairment, there have been several reports of amyloid plaques and NFT present in the post-

mortem brains with no evidence of cognitive impairment (Forman et al., 2007). Moreover, 

studies have reported cognitive improvement in AD models as a response to various treatments 

but without any effect on amyloid load, suggesting it is unlikely that amyloid plaques per se 

cause cognitive deterioration and an alternative or parallel mechanism mediates synaptic 

function underlying the cognitive symptoms associated with AD. In light of this evidence, in 

addition to the earlier “traditional” pathophysiology mechanisms such as the amyloid cascade 

and tauopathy, several recent hypotheses have been proposed, each attempting to offer 

mechanistic understanding of the complex pathophysiology and the systemic changes in the 

brain caused by AD. Among others, neuroinflammation, oxidative stress, excitotoxicity, 

metabolic and mitochondrial dysfunction are suggested to have key roles in AD pathogenesis 

(Akiyama et al., 2000; Grundke-Iqbal et al., 1986; Hardy & Higgins, 1992). While there is 

evidence supporting each of these hypotheses, there is increasing realization that interplay 

between multiple genetic and environmental factors is likely involved.  
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1.2. Epilepsy and seizure disorders 
The epilepsies are a heterogeneous group of chronic neurological conditions characterised by 

recurrent spontaneous seizures and often associated psychiatric and cognitive symptoms (Orrin 

Devinsky et al., 2018). They are estimated to affect over 50 million people of all age groups 

worldwide and make up 0.5% of the global burden of disease (Beghi et al., 2019; World Health 

Organisation, 2019). Although many patients achieve seizure control or even seizure freedom, 

a substantial number of patients require a combination of medications, resective surgery or 

neuromodulation devices, and close to one-third of epilepsy patients continue to have 

uncontrolled seizures (Orrin Devinsky et al., 2018). The debilitating direct effects of seizures 

such as accidents and injuries are often compounded by indirect effects such as epilepsy-related 

neuropsychiatric comorbidities, leading to significant reduction in the overall quality of 

patients’ life. Owing to advances in modern medicine and decades of collaborative research 

effort, our understanding of seizures and their aetiology has evolved from the regrettable 

notions of the patients “being possessed” towards understanding of the various genetic and 

environmental causes and processes involved in generation of seizures (ictogenesis) and 

transformation of normal neural circuits into epileptic circuits (epileptogenesis). A 

continuously updated list of seizure classification and relevant definitions is maintained by the 

international league against epilepsy (ILAE) which also provides a detailed framework for 

diagnosis of seizures, epilepsies and epilepsy syndromes (Scheffer et al., 2017). Figure 1.2. 

summarizes the current ILAE classification of seizure and epilepsy types and aetiologies. 

Figure 1.2 The basic ILAE 2017 operational classification of seizure types as described in (Fisher 
et al., 2017) Figure created with BioRender.com 
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1.3. Epilepsy in AD: bi-directional association between amyloid 
pathology and seizures 
1.3.1. Evidence from clinical studies 
In the recent years, a bi-directional association between Alzheimer’s Disease and epilepsy has 

been observed, with AD-like cognitive impairments often presenting in epilepsy patients, and 

increased rates of epileptic seizures reported in AD patients. Notably, non-convulsive 

epileptiform activity has been identified in over 40% of patients with sporadic AD (K. A. 

Vossel et al., 2016). Various transgenic mouse models of AD also show spontaneous 

epileptiform and seizure activity and increased susceptibility to chemically and electrically 

induced seizures (Bezzina et al., 2015; Palop et al., 2007; Tanila et al., 2019; Ziyatdinova et 

al., 2016). Importantly, there is solid evidence indicating that co-occurrence of epileptiform 

activity with AD-like pathology is associated with faster disease progression and more severe 

cognitive decline (K. A. Vossel et al., 2016; K. A. Vossel, Tartaglia, Nygaard, Zeman, & Miller, 

2017). Epileptiform activity, which is defined as spikes and sharp waves in the EEG, is 

commonly detected in the temporal brain regions of AD patients (K. A. Vossel et al., 2016). 

Consequently, temporal lobe epilepsy (TLE) is generally recognized as the subtype of epilepsy 

most commonly comorbid with AD (Scharfman, 2012), with the two diseases having 

overlapping risk factors, as well as electrophysiological, neuropsychiatric and neuroimaging 

(functional magnetic resonance imaging, fMRI) commonalities. Traumatic brain injury, 

inflammation, aging and stroke are risk factors for both AD and TLE (Hauser & Annegers, 

1991; Hauser, Morris, Heston, & Anderson, 1986; Hesdorffer, Hauser, Annegers, Kokmen, & 

Rocca, 1996). Additionally, the traditional hallmarks of AD such as amyloid plaques, 

neurofibrillary tangles and hippocampal sclerosis have been reported in TLE patients 

(Davidson et al., 2011; Mackenzie & Miller, 1994; Tai et al., 2016; Thom et al., 2011).  

A very recent study has investigated the temporal lobe tissue from 19 drug-resistant TLE 

patients and found increased expression and phosphorylation of APP, upregulation of APP-

cleaving enzymes ADAM10 and BACE1 and their cleavage product Aβ42 and increased 

expression and hyperphosphorylation of two tau isoforms (Gourmaud et al., 2020).  

While there is no shortage of novel hypotheses and elegantly conceived review articles (Palop 

& Mucke, 2010; Romoli, Sen, Parnetti, Calabresi, & Costa, 2021; K. A. Vossel et al., 2017) 

attempting to elucidate the mechanistic link between seizures, AD pathology and cognitive 

deterioration, there are substantial uncertainties regarding the cause-effect relationships 
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between epileptiform activity and amyloid pathology. First, epileptiform activity and seizures 

are observed in early as well as late stages of AD, therefore, it is challenging to determine if 

the early undetected epileptiform discharges and subsequent circuit modifications increase the 

risk of developing AD, or the already-present AD pathology renders the neuronal circuits 

hyperexcitable, thereby increasing the patients’ susceptibility to seizures. Furthermore, the 

reports on the increased prevalence of dementia and seizures in the context of epilepsy and 

Alzheimer’s disease diagnoses, respectively, vary considerably, ranging from 3-fold increase 

in the risk of developing seizures all the way to 87-fold increase in the context of early onset 

AD (Amatniek et al., 2006). This variation could be attributed to the varying clinical diagnostic 

criteria for dementia diagnosis, the small size of available cohort-based EEG studies, and lack 

of standardized comprehensive neuropsychological assessment (Dun et al., 2022; Huang, Fu, 

Li, & Peng, 2022; Miranda & Brucki, 2014; B. Zhao et al., 2021; N. Zhao et al., 2022). 

Additionally, there seems to be inherent heterogeneity within the AD cohort, where only a 

subset of patients develop seizures. Several systematic review and meta-analysis studies have 

attempted to pool the seizure incidence data from the small AD cohort studies. In 2022 alone, 

at least five systematic reviews investigating the prevalence of epilepsy/seizures in AD patients 

have been published – all coming to analogous conclusions that the available clinical data is 

scarce and a large number of the studies are not directly comparable due to the lack of 

standardized diagnostic criteria for cognitive impairment, “epileptiform” activity and/or 

seizures (Dun et al., 2022; Huang et al., 2022; B. Zhao et al., 2021; N. Zhao et al., 2022).  

Fortunately, in the last two years, this lack of vital clinical data has been somewhat attenuated 

with the publication of several large scale, multi-centre population-based studies (Banote, 

Håkansson, Zetterberg, & Zelano, 2022; Habeych, Falcone, Dagar, Ford, & Castilla-Puentes, 

2021; Schnier, Duncan, Wilkinson, Mbizvo, & Chin, 2020; Vöglein et al., 2020), as well as 

randomized clinical trials involving anti-seizure drugs (K. Vossel et al., 2021) and long-term 

EEG studies (Horvath et al., 2021), which provide critical insight into the nature of this “bi-

directional” relationship between seizures and amyloidosis. One of these studies involving over 

20,745 individuals (10,527 with AD diagnosis and 10,218 cognitively intact controls) 

established that seizures in AD are highly recurrent (>70% recurrence rate, within <8 months) 

and are associated with more severe cognitive impairment (Vöglein et al., 2020). Furthermore, 

subclinical epileptiform activity seems to correlate well with the rate of cognitive decline 

among patients with AD (Horvath et al., 2021).  Another 2022 study looking at CSF biomarkers 
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in a large (>18,000 individuals) cohort of AD patients with or without seizures demonstrated 

that, compared to those without seizures, the subpopulation of AD patients who did develop 

seizures had biochemically more severe disease profile, evidenced by increased concentrations 

of total tau and p-tau, and reduced concentration of Amyloid beta 1-42 in the CSF (Banote et 

al., 2022). The above clinical evidence argues that epileptiform activity is more relevant in the 

context of AD progression than previously recognized. Importantly, this suggests that in 

addition to differing clinical prognosis and EEG profile, the subpopulation of AD patients 

presenting with seizures also has a distinct cognitive and biochemical profile (Banote et al., 

2022). Accordingly, at least for this subgroup of epilepsy-prone AD patients, the accelerated 

cognitive deterioration is the inevitable consequence of disease progression and is likely 

precipitated by the synergistic interaction between AD pathology and recurrent seizures.  

Understanding the mechanism and the key mediators of the synergistic interaction between 

hyperexcitability and AD pathology would allow for identification of specific biomarkers and 

aid with more accurate diagnosis of this subtype of AD. While the treatment against amyloid 

pathology is still in preliminary stages, there are a number of effective next-generation anti-

epileptic drugs that have been shown to improve spatial memory and executive function in 

patients with AD and epileptiform activity (K. Vossel et al., 2021). If the early hyperexcitability 

and subclinical epileptiform activity are the main drivers of cognitive decline and further 

neuroinflammation and synaptic degeneration, early diagnosis and anti-seizure treatment could 

slow down disease progression and delay cognitive deterioration.  

1.3.2. Evidence from mouse models 

Generation of rodents that model aspects of various human conditions advanced medical 

research by leaps and bounds by allowing the understanding and treatment of numerous 

diseases. According to Alzheimer Research Forum (alzforum.org) there are 189 rodent models 

of AD as of year 2020. The vast majority (180) of them are mouse models, with some strains 

being utilized more than others (Table1.1). A lot of these models are genetic i.e. they harbor 

one or more of the mutations in amyloid precursor protein (APP), tau protein, presenilins: 

enzymes that process APP, apolipoproteins E2, E3, E4 with various promotors and knock-in 

or knock-out combinations. Some of these mutations such as APP and PSEN1 appear to be 

causative and were identified in families that develop familial or early onset AD. Others, like 

variations in apolipoproteins are risk factors and have been identified through large GWAS 

studies.  Based on the mutation type, promotor and background strain, the severity and temporal 
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progression of pathology development differs between mouse models, with some lines 

developing amyloid plaques as early as at two months of age, while some lines don’t develop 

them at all, or after 12 months of age (Table 1.1).  

Model Gene Mutation Pathology 

3xTg 
APP, 
PSEN1, 
tau 

APP(Swe), 
PS1(M146V), 
MAPT(P30IL) 

Extracellular Aβ deposits by 6 m.o., plaques 
and tangles, synaptic dysfunction 

5xFAD 
APP, 
PSEN1 

APP(Swe, Fl, Lon), 
PS1(M146L, L286V) 

Intracellular accumulation of Aβ, plaques at 2 
m.o., gliosis, synapse degeneration, neuronal 
loss 

APP/PS1 
APP, 
PSEN1 

APP(KM670,671NL), 
PS1(L166P) 

Amyloid plaques in neocortex at 1.5 m.o., in 
hippocampus at 3-4 m.o., phosphorylated tau 

Tg2576 APP APP(Swe) 
Amyloid plaques at 12 m.o., astrogliosis, 
microgliosis 

J20 APP APP(Swe, In) 
Amyloid plaques, dystrophic neurites, 
synaptic loss 

TgCRND8 APP APP(Swe, In) 
Amyloid plaques at 3 m.o., neurotic pathology 
at 5 m.o., astrogliosis, microgliosis 

rTg4510 tau MAPT(P301L) 
Tangle-like inclusions at 4 m.o.,  neuronal loss 
in CA1, forebrain atrophy at 10 m.o. 

Table 1.1 Summary of the most widely used transgenic mouse models of Alzheimer’s Disease 

 
In line with clinical observations, many AD models also display increased seizure susceptibility 

and aberrant EEG activity, compared to healthy controls. Several in vivo experiments involving 

transgenic mouse lines (APdE9, Tg2576, ArcticAPP, hAPPJ20, rTg4510) that model age-

dependent amyloid accumulation and tauopathy reported increased susceptibility to electrically 

and chemically induced seizures, as well as epileptiform activity (Bezzina et al., 2015; B. F. 

Corbett et al., 2013; B. F. Corbett et al., 2017; Hazra et al., 2016; Ziyatdinova et al., 2016), 

frequent unprovoked seizures (C. H. Fu et al., 2019; Minkeviciene et al., 2009), reduced 

expression of inhibitory markers and decreased resting membrane potential of neocortical 

pyramidal cells (Minkeviciene et al., 2009). The extracellular plaque depositing APP/PS1 

double transgenic line harbouring APPswe and PS1dE9 mutations is one of the most 

investigated transgenic mice in AD research. Multiple research groups have observed spike-

trains (Papazoglou et al., 2016), epileptiform spikes (Reyes-Marin & Nunez, 2017), 

spontaneous seizures (Ziyatdinova et al., 2011) and increased sensitivity to proconvulsant 

agents such as PTZ in APP/PS1 mice. Additionally, the expression of inhibitory markers and 
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resting membrane potential of neocortical pyramidal cells were reported to be decreased in the 

APP/PS1 (Minkeviciene et al., 2009). Another line that robustly develops amyloid plaques at 

early stages is the hAPPJ20 line, which was shown to have spontaneous seizures, mossy fibre 

sprouting and depletion of NMDA and AMPA receptors in the dentate gyrus (Palop et al., 

2007). The abundance of the currently available lines of transgenic mice carrying different 

APP-related mutations provide a useful system of controlled environment and known variables 

to determine which form(s) of amyloid product (full-length APP, AICD, Aβ oligomers, senile 

plaques, etc.) mediate the observed circuit hyperexcitability phenotypes.  

1.4. Effect of amyloid pathology on neuronal excitability and synaptic 
transmission 
Cognitive deterioration is the inevitable consequence of AD, however it is important to note 

that impairment in cognitive function such as failure to recall encoded memories, may not 

simply be the consequence of neuronal death, but rather the result of impaired synaptic 

transmission (Selkoe, 2002). Indeed, synaptic loss is the best correlate and predictor of 

cognitive decline in AD-affected brains (Terry et al., 1991), however, the exact mechanism 

underlying this process is not fully elucidated. Given the central role of APP and its cleavage 

products in AD pathology, it is reasonable to propose the involvement of one or more amyloid 

products in increasing neuronal excitability and thereby resulting in seizure-induced synaptic 

dysfunction and subsequent cognitive deterioration. A question arises then, which form of 

amyloid product is the major mediator of hyperexcitability? The following paragraphs discuss 

the involvement of above-mentioned amyloid products in causing circuit hyperexcitability, 

epileptiform activity and seizure-induced synaptic dysfunction in the context of recent evidence 

from in vitro and in vivo studies.  

1.4.1. Soluble Amyloid beta 
Using epileptiform spikes and discharges on the EEG as a measure of circuit excitability, 

several recent studies involving different transgenic AD mouse models demonstrated that the 

concentration of soluble Aβ oligomers is the best determinant of circuit hyperexcitability. 

Accordingly, a study by Palop et al, utilised several models of transgenic APP mice displaying 

varying concentrations of Ab, ranging from minimal (hAPP-I5), to moderate (hAPP-J9/FYN) 

to severe (hAPP-J20, hAPP-ARC48), found evidence of comparable hyperexcitability only in 

the lines with soluble Aβ fragments (hAPP-J9/FYN, hAPP-J20 and hAPP-ARC48), but not in 

the hAPP-l5 - a transgenic mouse that overexpresses a wild-type human APP, but has no 
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elevated Aβ levels or any plaque deposition (Mucke et al., 2000; Palop et al., 2007). Similarly, 

another study involving chronic EEG monitoring of APParc and APPswe/PS1dE9 mice 

demonstrated that increased epileptiform activity correlated with higher soluble Aβ production 

(Ziyatdinova et al., 2016). Notably, APParc mice displayed less frequent discharges compared 

to APPswe/PS1dE9, despite them expressing more mutant human APP. While the 

APPswe/PS1dE9 mice present with dense Aβ plaques at 6 months of age and show increased 

levels of soluble Aβ oligomers compared to APParc line, the APParc mice demonstrate higher 

APP overexpression, but reduced production of soluble Aβ as the arctic mutation resides within 

the Aβ sequence and does not affect β-secretase cleavage. (Papazoglou et al., 2016; Reyes-

Marin & Nunez, 2017; Ziyatdinova et al., 2011). This line of evidence suggests that the 

increased concentration of Aβ peptide and not the mutated APP itself, is likely responsible for 

increased excitability.  

While Aβ production is a normal consequence of cellular metabolism, the pathogenic 

association of the newly-cleaved soluble Aβ fragments with the lipid raft structures of the 

plasma membrane results in its intracellular accumulation and aggregation into neurotoxic 

oligomers and fibrils, which are thought to be the key mediators of synaptic loss and neuronal 

dysfunction. Published literature agrees that Aβ has acute effect on synaptic function and can 

inhibit hippocampal long-term potentiation (Walsh et al., 2002), however the reports on the 

mechanisms and direction of this effect are controversial. Several earlier electrophysiological 

studies involving bath application of Aβ to organotypic slices and cell culture reported increase 

in synaptic activity and excitability of neurons (Minkeviciene et al., 2009), while others suggest 

synaptic depression (Kamenetz et al., 2003). This inconsistency implies that the neuro-

modulatory effect of Aβ depends on its concentration and oligomeric state as well as the type 

of neuron in question. The soluble oligomeric species of Aβ can bind to a wide range of ion 

channels and neurotransmitter receptors such as N-methyl-D-aspartate receptors (NMDAR), 

nicotinic acetylcholine receptors (nAChR), as well as various other ligands expressed both on 

the surface of neurons and glia, triggering the activation of downstream signalling pathways 

(Shankar et al., 2007). For instance, at low picomolar presynaptic concentrations Aβ acts as a 

positive synaptic regulator, reportedly potentiating synaptic transmission, while at the same 

time, at higher (nanomolar) postsynaptic concentrations it is a negative regulator, causing 

synaptic depression (Abramov et al., 2009; Palop & Mucke, 2010). Additionally, Aβ has been 
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suggested to block glutamate reuptake from synaptic cleft, thus resulting in glutamate spill-

over and subsequent excitotoxicity (Lei et al., 2016).  

1.4.2. APP overexpression-related indirect mechanisms 
While increased APP production and dense core amyloid plaques may not directly affect 

neuronal excitability, there are several indirect mechanisms through which these amyloid 

products can lead to hyperexcitability and neuronal loss. One mechanism through which APP 

overexpression may indirectly disrupt the excitatory/inhibitory balance is through β-secretase 

cleavage. The activity and protein level of β-secretase – one of the enzymes that cleave APP is 

reportedly increased in patients with AD (Fukumoto, Cheung, Hyman, & Irizarry, 2002). This 

enzyme also cleaves NaVβ2 – a subunit of a voltage gated sodium channel NaV1.1 (Wong et 

al., 2005). The phenotype associated with loss-of-function mutations in this channel range from 

febrile seizures to severe myoclonus. It has been observed in several transgenic AD and 

BACE1-null mice that there is increased β-secretase-dependent cleavage of NaVβ2, leading to 

NaV1.1 being retained inside the cell, thus resulting in  reduced sodium current due to 

decreased surface levels of NaV1.1 (B. F. Corbett et al., 2013; D. Y. Kim, Gersbacher, 

Inquimbert, & Kovacs, 2011; Verret et al., 2012).  These studies conclude that Navβ2 and its 

correct processing is essential for normal expression and function of NaV1.1, and loss of VGSC 

at random sites could compromise the ability of action potential generation. Since NaV1.1 is 

prominently expressed in Parvalbumin expressing (PV) inhibitory interneurons, decreased 

sodium current due to inadequate number of NaV1.1 channels will result in reduced inhibitory 

input and overall increase in excitability of the larger network. Fast-spiking PV expressing 

basket cells generate high-frequency oscillations in gamma range, which reflects their 

inhibitory input onto excitatory pyramidal neurons. Disruption in gamma oscillatory power due 

to inadequate interneuron function results in network hypersynchrony (Cardin et al., 2009; Y. 

Wang et al., 2010). A study by Verret and colleagues utilised the hAPPJ20 mice to demonstrate 

that hypersynchronous activity was more likely during reduced gamma oscillatory activity, 

which suggested that gamma activity is a modulator of hyperexcitability and epileptiform 

activity. Furthermore, they established that the disruption of gamma oscillatory activity and 

subsequent circuit hypersynchrony is causally linked to the dysfunction in NaV1.1,  as it was 

found that when the deficit in NaV1.1 activity was rescued, the inhibitory input was restored, 

leading to a reduction in epileptic activity in hAPPJ20 mice (Verret et al., 2012).  
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Based on the evidence from the above-mentioned studies it is reasonable to hypothesize the 

following chain of events that lead to network hypersynchrony in hAPP transgenic mice: 

overexpression of mutant human APP causes an increase in β-secretase-dependent cleavage of 

NaVβ2 subunit of NaV1.1 on PV interneurons, and a subsequent reduction of inhibitory input. 

Reduced inhibitory input renders the circuit hyperexcitable, while reduced gamma oscillatory 

power allows for hypersynchrony of the neuronal network and ultimately the emergence of 

epileptiform activity.  

1.4.3. Neuroinflammation 
Another mechanism by which amyloid products lead to hyperexcitability and synaptic 

dysfunction is through triggering neuroinflammatory response cascades (Canevari, Abramov, 

& Duchen, 2004; T. Kim et al., 2013). Chronic neuroinflammation is a hallmark of AD 

pathology, and is an early event during disease progression (Cappellano et al., 2013). Several 

epidemiological studies have shown that patients who have been receiving long-term anti-

inflammatory treatment show decreased risk of developing AD compared to age-matched 

controls, however, the attempts to reverse neurodegeneration and cognitive decline in late 

stages of AD using anti-inflammatory agents have failed so far (Breitner, 1996; Breitner et al., 

1995; Jaturapatporn, Isaac, McCleery, & Tabet, 2012; Stewart, Kawas, Corrada, & Metter, 

1997). 

Microglia, the resident immune cells of the nervous system, have been shown to be key players 

in sustaining chronic neuroinflammation and inducing neuronal dysfunction in the context of 

AD pathology. These cells have two general functions: physically destroying the intruders by 

engulfing them; and releasing inflammatory cytokines in order to recruit more microglia to 

mount an innate immune response. Fibrillar aggregates of amyloid beta have been shown to 

bind to a multitude of microglial receptors including CD36, TLR4 and TLR6, inducing 

activation of inflammasomes and classical complement pathway (S. Chen, Frederickson, & 

Brunden, 1996) and triggering phagocytic clearance (Heneka et al., 2015; S. Liu et al., 2012). 

Upon interaction with fibrillar amyloid beta, microglia recognize it as danger associated 

molecular pattern (DAMP) and become “reactive” to facilitate phagocytic clearance. This 

process is generally referred to as “reactive microgliosis” and is characterized by changes in 

cell morphology and surface markers as well as secretion of proinflammatory cytokines 

including IL-1β, TNF- α, IL-6 and upregulation of toll-like receptors. The released 
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inflammatory cytokines recruit more microglia to the vicinity of amyloid plaque to form a 

“protective barrier” by surrounding the plaque (Condello, Yuan, Schain, & Grutzendler, 2015).  

In addition to activating inflammatory cascades, cytokines also control the permeability of the 

blood-brain barrier (BBB), regulate the expression of genes involved in neurotransmission and 

synaptic plasticity, and modulate receptor coupled ion channels and voltage gated ion channels: 

therefore, chronic neuroinflammation and excessive production of proinflammatory cytokines 

may alter neuronal excitability and have detrimental effects on synaptic and neuronal health 

(Vezzani & Viviani, 2015). For example, the classic pro-inflammatory cytokine IL-1β which 

is induced after brain injury, has been shown to have proconvulsant effects, while its receptor 

antagonist supresses seizures (Vezzani et al., 1999). The production of active IL-1β is 

controlled by the NLRP3 inflammasome, which, upon activation, cleaves pro IL-1β and pro-

IL-18 into their active state. It is important to note that fibrillar Aβ alone can activate the 

inflammasome (S. Liu et al., 2012; Tejera et al., 2019; Venegas et al., 2017) as it can be 

recognized as a PAMP/DAMP and is able to bind to TLRs.  As a result of excess amyloid 

deposition, prolonged activation, aging-related DNA damage and oxidative stress some 

microglia may become less responsive to anti-inflammatory cytokines such as IL-10, IL-4 and 

TGF- β and start producing excess amount of proinflammatory cytokines (Block, Zecca, & 

Hong, 2007). This microglial neurotoxicity more recently referred to as “disease associated 

microglia” contributes towards faster disease progression. Indeed, older patients when exposed 

to immune challenge, experience significantly prolonged inflammatory response, have 

increased expression of IL-1β and higher risk of developing cognitive impairments and 

depression (Penninx et al., 2003; Wofford, Loehr, & Schwartz, 1996).  

Similar to microgliosis, astrogliosis is signified by astrocytes transforming into active 

astrocytes, leading to changes in the functions and morphology of each astrocyte (Habib et al., 

2020). Evidence from mouse models of AD indicates that reactive astrogliosis results in 

impairment of normal astrocytic function, leading towards emergence of “disease associated 

astrocyte” populations and reduced ability of astrocytes to uptake glutamate (Mathur et al., 

2015; Olsen et al., 2018; Söllvander et al., 2016). Since glutamate is the most abundant 

excitatory neurotransmitter in the brain, the decrease in the rate of glutamate uptake from the 

synaptic cleft and its extracellular accumulation may increase the overall neuronal excitability, 

subsequently causing glutamate excitotoxicity (Perea et al., 2016). 
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1.5. Network view of disease 
Over the past decades advances in medicine, biotechnology and genetics have enabled us to 

define biological systems at the molecular level by integrating high-throughput transcriptomic, 

proteomic and metabolomic data from the same cell population or tissue and generating groups 

of genes and biological pathways associated with particular states of the system (Barabási & 

Oltvai, 2004). This has enabled the construction of data-driven networks of genes and proteins 

that provide framework for understanding the molecular basis of complex diseases by 

comparing the signature network attributes of normal and dysfunctional states (Y. Chen et al., 

2008; Schadt, Friend, & Shaywitz, 2009). Viewing disease as a result of elaborate interplay of 

cellular pathways – much like a network, accounts for the intricacy and complexity of human 

biology, as it assumes that perturbations in a single node of this network have the potential of 

affecting the entire module it belongs to. This system or network approach is proving to be 

powerful in biomarker discovery in cancer research due to its multiple advantages over the 

traditional linear causality model approach, which fails to fully account for the complex web 

of interactions of gene products and key regulators (Lehmann et al., 2011; Nagrath et al., 2007). 

To take it a step further, this in silico method could be used to redefine disease, moving from 

“collection of symptoms” to “differentially wired or perturbed gene network” thus also 

changing the way we think about diagnosis and personalized medicine.  

1.5.1. Transcriptomics and high throughput sequencing 
The above-mentioned network approach to biomedical research has been fuelled by the data 

generated through high throughput technology such as transcriptomics, proteomics and 

metabolomics. Diseases as dysfunctional states are associated with altered gene expression 

which can be captured by gene expression profiling via microarray or RNA-seq technology 

and performing a differential gene expression analysis of the mRNA in a given tissue (Z. Wang, 

Gerstein, & Snyder, 2009). Comparison of transcriptomes allows for identification of 

differentially expressed genes as a result of treatment or disease, or between different types of 

cells and tissues. In addition to novel technology such as nCounter by NanoString (Goytain & 

Ng, 2020) that directly quantifies the number of mRNA molecules in the sample, microarray 

and RNA-sequencing are the two widely used high-throughput methods for gene expression 

analysis. High throughput transcriptomics is unbiased compared to quantitative PCR, that 

probes a pre-selected list of genes, as it is able to probe virtually every known transcript at once. 

While microarray technology is more affordable and has revolutionized transcriptomics, RNA-
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seq is more sensitive, able to detect post-transcriptional modifications and doesn’t require 

previous knowledge on the sequence of the transcript, which is why it is considered the gold 

standard for discovery research (Hoeijmakers, Bartfai, & Stunnenberg, 2013; Raz et al., 2011).  

1.5.2. Pathway enrichment analysis 
Differential gene expression analysis is a powerful method of comparing the variations in gene 

transcripts between groups. It has been instrumental in identifying numerous new biomarkers 

for numerous diseases ranging from various cancers to neurodegenerative and cardiovascular 

diseases (Han, Xue, Tao, & Zhu, 2019; Lu & Thum, 2019; Mihaly et al., 2013; X. Pang et al., 

2017). However, when there are hundreds or thousands of genes differentially expressed 

between two groups, it becomes challenging to make biologically relevant conclusions from 

the analysis results. A more meaningful understating of the pathology would entail capturing 

changes in relevant biological pathways and their interaction. Pathway enrichment analysis 

addresses this issue by summarizing the large gene list into a smaller list of more easily 

interpretable biological pathways. Most pathway enrichment analysis methods involve a 

statistical test that determines if the genes in a given set are overrepresenting any pathway more 

than what is expected by chance (Reimand et al., 2019). These pathways are then assigned an 

enrichment score and can be put in an enrichment map, which is a network graph, where nodes 

represent pathways and the edges connecting the nodes represent commonalities in the 

composition of the pathway.  

1.5.2. Gene coexpression network analysis 
High throughput sequencing and differential expression analysis are invaluable for determining 

the relative abundance of every single transcript in a given tissue and identifying transcripts 

that are orders of magnitude more or less abundant compared to housekeeping genes. However, 

small changes in the expression of a large number of genes may be overlooked. Genes do not 

operate in isolation, neither do they change their expression without any consequence to the 

rest of the members of the given biological pathway. Thus, it is not sufficient to find a 

differentially expressed gene or a group of genes, in order to characterize a disease. A growing 

body of evidence suggests that complex diseases such as diabetes result from small but 

consistent changes in the expression of many genes rather than large, obvious defects in a few 

genes (Grimes, Potter, & Datta, 2019; Michael R. Johnson et al., 2015; Mukherjee, Klaus, 

Pricop-Jeckstadt, Miller, & Struebing, 2019; B. Zhang et al., 2013).  Gene coexpression 

network analysis addresses this issue by interrogating the expression pattern of all genes in the 
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given transcriptome. Gene coexpression networks are undirected graphs, where the nodes are 

genes and the edges reflect the Pearson correlation coefficient between any pairs of genes. The 

nodes in the network are connected by an edge if the two genes have similar expression pattern 

i.e. they are overexpressed or underexpressed together (Lee, Hsu, Sajdak, Qin, & Pavlidis, 

2004).  

In 2005 Zhang and Horvath introduced the concept of weighted gene coexpression networks 

(Zhang & Horvath, 2005), where coexpression measure of gene pairs is converted into a 

connection weight in the representative network graph.  Since then, weighted gene 

coexpression network analysis (WGCNA) has been implemented in R programming 

environment (Langfelder & Horvath, 2008) and became one of the most widely utilized and 

validated frameworks for gene coexpression analysis, with over 14,000 citations of the 

WGCNA R package since its publication in 2008. Weighted gene coexpression networks can 

be hierarchically clustered into highly connected groups of genes called modules, and further 

examined using graph theoretical measures. Since genes involved in the same biological 

pathways tend to have similar expression pattern, these highly connected modules represent 

functionally related cellular functions and can be cell-type specific. The topology of two 

networks can then be compared using differential network analysis in order to capture similar 

connectivity, which in turn, reflects the overlap in biological pathways implicated in the 

conditions the networks are associated with (Langfelder & Horvath, 2007). On the other hand, 

differentially connected networks may indicate changes in the underlying cellular activity, or 

perturbation. Centrality measures such as degree centrality and betweenness centrality can be 

explored to identify the highly connected nodes within the perturbed gene modules, which 

could be important regulators and provide valuable insight in the groups of genes that are 

relevant to the mechanism of perturbation (Figure 1.3).  
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Figure 1.3 Biological networks. a. A disease interactome mapping protein-protein interactions around 
known disease proteins. b. Gene coexpression network depicting colour-coded functional modules.  
 

Because of the interconnected nature and complexity of biological networks, it can be difficult 

to see diseases as independent from one another at the molecular level. Different disease-

related modules can overlap so that perturbations in one disease module can have an effect on 

the presentation of the other. This network-based dependency between pathophenotypes has 

led to the concept of the human diseasome (Figure 1.3). It represents disease graph networks 

where nodes represent diseases and edges between them represent different molecular 

relationships among disease-associated cells. Understanding the links between diseases can 

help us not only understand how different phenotypes are related at the molecular level but also 

why certain diseases occur together. The rapidly growing field of network medicine offers 

insights that could lead to new approaches to disease prevention, diagnosis and treatment. The 

use of diseasome-based methods could aid in drug discovery, especially when it comes to 

molecularly related diseases such as AD and epilepsy.  
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1.6. Research aims 
It is increasingly evident that epileptiform activity is more prevalent in AD patients than 

previously recognized. Further, the presence of epileptiform activity predicts faster cognitive 

decline in AD, and it could promote accelerated disease progression through not yet fully 

known mechanisms. Thus, the overall aim of this PhD thesis was to explore the molecular links 

between pathways that could mediate the common electroencephalographic and behavioural 

phenotypes seen in the context of AD and epilepsy pathologies. The four experimental chapters 

included in this work utilise network-based computational methods, and specifically aim to: 

1) characterise the molecular signature of human AD and that of most widely used 

mouse models of AD (Chapter 2) 

2) characterise the molecular signature of the brain which presents with 

pathophysiology seen in in two distinct models of epilepsy: the post-status 

epilepticus model of temporal lobe epilepsy and the GAERS model of absence 

epilepsy (Chapter 3) 

3) investigate the shared molecular signature of AD and temporal lobe epilepsy by 

identifying commonly dysregulated pathology-specific gene modules which could 

explain the correlated incidence of the two diseases (Chapter 4) 

4) investigate the mechanism and potential mediators of the bi-directional relationship 

between amyloid pathology and epilepsy by examining the effect of recurrent 

seizures on hallmark features of AD pathology such as amyloid plaque load and 

cognitive performance (Chapter 5).  
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CHAPTER 2 
 
THE MOLECULAR SIGNATURE OF ALZHEIMER’S 
DISEASE: INSIGHT FROM HUMANS AND ANIMAL 
MODELS 
2.1. Introduction 
Alzheimer’s is a complex disease, probably a combination of more than one dysregulated 

biological pathway or mutation, however, it is possible to extract enough gene expression 

information in order to construct a representative group of dysregulated genes and biological 

pathways that describe the pathology with reasonable accuracy. This model can then be used 

to identify molecules for pharmacological targeting. In turn, the development of these targeted 

therapeutic agents largely relies on the translatability of the mechanisms and their mode of 

action from mouse models to humans. There are over 150 genetic mouse models of 

Alzheimer’s disease, each mimicking one or more of the rare mutations implicated in familial 

Alzheimer’s disease. However, the vast majority of human AD cases are sporadic in nature, 

with no common single mutation at play. While it is hard to model sporadic AD in animals, 

increasing affordability of high throughput technology, open access databases and approaches 

are giving rise to new investigative options. With the dramatic reduction in the cost of whole 

transcriptome analysis and a huge number of publicly available microarray and RNAseq data, 

it is now possible to combine the results of several experiments in a meta analysis for increased 

statistical power and reproducibility, as well as integrate transcriptomic and metabolomic 

profiles of various models to evaluate the extent of similarity and translatability of biological 

pathways and mechanisms between mouse models and humans. Therefore, the initial step of 

this PhD was to characterise the molecular signatures of human sporadic (late onset) AD and 

that of most widely used mouse models of AD. The two sets of transcriptomes would then be 

compared in an attempt to identify a model with most similar molecular signature to that of 

human AD pathology.  

2.2. Methods 
2.2.1. Datasets 
In order to generate a reliable and representative gene coexpression signature of a disease, large 

datasets with more than 30 samples are needed. To characterize the molecular signature of AD, 

a publicly available large microarray dataset of post-mortem brain tissue from Late Onset 
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Alzheimer’s Disease (LOAD) patients and non-demented subjects from the Harvard Brain 

Tissue Resource Centre (GSE44770) was used. This dataset was contributed by Zhang et al., 

who in a 2014 study identified TYROBP as a key regulator in LOAD using causal probabilistic 

Bayesian and gene co-expression networks (B. Zhang et al., 2013). The dataset includes 

prefrontal cortex samples from 129 AD and 101 non-demented control individuals. The 

expression matrix was downloaded from NCBI Gene Expression Omnibus (Clough & Barrett, 

2016) on 10/08/2019 via GEOquery R package, filtered for low abundancy genes and the probe 

annotations were mapped to Entrez IDs (G. Zhou et al., 2019). Variance stabilizing and quantile 

normalizations were performed, followed by differential expression analysis using Limma R 

package (RStudio version 3.6).  The differentially expressed genes were then ranked based on 

fold change and a Gene Set Enrichment Analysis (GSEA) (Subramanian et al., 2005) based on 

the KEGG database was performed using the NetworkAnalyst 3.0 tool (G. Zhou et al., 2019). 

2.2.2. Weighted gene coexpression network analysis  
A weighted gene coexpression network was constructed using the filtered and normalized 

expression matrix. Briefly, a correlation matrix was constructed from the Pearson correlation 

values of all genes. A series of soft thresholding values were used to determine the optimal 

power at which the correlation matrix fit the scale-free topology model, i.e. when the 

characteristcs of the network are independent of its size. The expression matrix reached a 90% 

fit to scale-free topology at ß=12, a soft threshold power recommended by creators of WGCNA 

R package for datasets containing more than 40 samples. An adjacency matrix was then 

constructed reflecting the pair-wise correlation coefficients between all annotated genes. The 

correlation network was then built based on the adjacency matrix, where each node corresponds 

to a single gene, and the edges between the nodes represent the correlation between the 

expression level of the given gene across all samples. The gene modules were then identified 

through hierarchical clustering and functionally annotated through pathway enrichment 

analysis. Hubs were determined by identifying the member gene with highest connectivity in 

each module.  

2.2.3. Functional annotation and enrichment analysis 
In order to determine the functional significance of the detected modules we performed a 

pathway enrichment analysis of the genes constituting each module using the g:Profiler online 

tool (Reimand et al., 2016). Some of the larger modules rendered over several hundred 

significantly enriched Gene Ontology and KEGG pathways. Since the Gene Ontology database 
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has a hierarchical order, we clustered the terms lower in hierarchy into their representative 

“parent” terms using a similarity threshold of 90% (Supek, Bosnjak, Skunca, & Smuc, 2011).  

2.3. Results 
Because the AD and NDC samples came from the same study, this facilitated a direct 

comparison of gene expression between these samples (Figure 2.1). A total of 4426 

differentially expressed genes were identified between the AD and NDC samples (FDR<0.05, 

Log2(FC)>1). Pathway enrichment analysis of underexpressed and overexpressed genes 

revealed overall downregulation of genes involved in synaptic transmission, axonogenesis, 

transport, and metabolic (mitochondrial, aerobic respiration) systems, and upregulation of 

genes involved in apoptotic, inflammatory and innate immune systems in AD samples 

compared to non-demented controls. Our differential expression analysis results agree with the 

previous report associated with this dataset (B. Zhang et al., 2013).  

Figure 2.1 Quality control and preprocessing of expression data a. Mean vs Standard Deviation plot 
of gene expression values. b. Principal component analysis between LOAD (AD) and non-demented 
control (WT) samples. 

After filtering and probe annotation, 14707 genes were included in the AD coexpression 

network. WGCNA identified 10 modules, ranging from 27 to 2897 nodes in size (Figure 2.2, 

Table 2.1). The same 10 modules could be identified independently of WGCNA in the Steiner-

Forest zero-order network, demonstrating that the gene modules identified by the WGCNA 

algorithm are robust and have functional significance. We functionally annotated these 

modules based on the member genes and named them based on the most enriched pathways in 

the top hierarchy level (Table 2.1). Not surprisingly, when cross-referenced with the KEGG 

a b
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pathway database, the genes constituting the largest module rendered the “Alzheimer Disease” 

pathway amongst the most significantly enriched (FDR=1.531 x10-11). 

Figure 2.2. Hierarchical cluster dendrogram of AD network. WGCNA identified 10 modules of 
coexpressed genes labelled by colour. Each branch (vertical line) corresponds to one gene. The colour 
rows below the dendrogram indicate module membership. The modules are functionally annotated and 
named based on the enriched GO pathways of the member genes. The grey module (partially not shown) 
contains genes that have no specific module assignment i.e. the expression pattern of these genes does 
not show sufficient variability. 

 
Module Functional annotation Size Hub gene 

Green (4) transcription 370 SMG5 

Blue (2) immune response 576 TNFRSF1B 

Brown (3) signalling 487 DPEP3 

Yellow (10) myelination 455 FA2H 

Red (8) DNA binding 170 CABP5 

Magenta (5) synaptic 109 DNM1 

Pink (6) inflammatory 121 DOCK2 

Turquoise (9) ATP metabolism 2897 NSF 

Black (1) extracellular matrix 123 DSP 

Purple (7) ribosome 27 RPL27AP6 

Table 2.1. Functional annotation, number of member genes and hub genes of AD coexpression 
modules. The annotation of a given module was determined based on the most significantly enriched 
pathways associated with the genes comprising the module. The node with most connections within 
each module was identified as the hub gene of the module.  
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A cortex-specific gene coexpression network was visualized using the differentially expressed 

genes as seed nodes in the NetworkAnalyst 3.0 web-based environment. NetworkAnalyst 

cross-references the TCSBN database for tissue-specific coexpression of genes. The resulting 

network contained 7530 nodes and 105632 edges, which is too large to analyze in a meaningful 

way. To address this issue, a zero-order subnetwork was extracted via Prize-collecting Steiner 

Forest algorithm, resulting in a highly connected network of 2569 nodes and 30239 edges 

(Table 2.2). Ten large modules were identified using the WalkTrap algorithm. These modules 

were analogous to those identified by WGCNA algorithm. The nodes of highest degree 

centrality and betweenness centrality are listed in Table 2.2.  

Gene Degree Description Gene Betweenness Description 

PGM2L1 250 Phosphoglucomutase 
2 CFLAR 570286 CASP8 And FADD Like 

Apoptosis Regulator 

GABBR2 234 GABA type B 
receptor subunit 2 LAMA5 557022 Laminin Subunit Alpha 5 

DLGAP1 192 DLG associated 
protein 1 PLP2 400454 Proteolipid Protein 2 

ATL1 191 Atlastin GTPase 1 SOGA2 313429 Microtubule Crosslinking 
Factor 1 

CALM3 190 Calmodulin-3 DOPEY2 259965 
DOP1 Leucine Zipper 

Like Protein B 

PRKCB 179 Protein kinase C beta STXBP5L 245985 
Syntaxin Binding Protein 

5 

KCNQ5 173 
VG potassium 

channel subfamily Q MAML2 238340 
Mastermind-Like Protein 

2 

ITFG1 173 Integrin alpha FG GRIK2 190839 Glutamate Receptor 6 

MAP7D2 169 MAP7 domain 
containing 2 FGFR1 180769 Fibroblast Growth Factor 

Receptor 1 

MOAP1 166 Modulator of 
apoptosis 1 KDM6B 177434 Lysine Demethylase 6B 

 

Table 2.2. Top 10 nodes in AD coexpression network with highest degree centrality (left) and 
betweenness centrality (right). 
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Centrality measures can be a good indication of the prominence of the given gene, which, when 

put in context with its function helps identify key regulators (Koschutzki & Schreiber, 2008). 

These hub genes have known protein-protein interaction (PPI) with a large number of genes, 

thus their dysregulation may have a ripple effect on the larger gene-group, and the biological 

pathway. 

One advantage of the NetworkAnalyst tool is the ability to integrate expression values of genes 

to zero order gene coexpression network, which allows to visualize the upregulated and 

downregulated modules of genes with functional enrichment information at the same time. 

When visualizing the composition of the two largest modules, which account for over 70% of 

all genes in the network, a distinct expression pattern is evident: the largest module (Module 9, 

turquoise, Figure 2.3) consists of mostly downregulated genes involved in synaptic systems 

including ion channels and their subunits, axon guidance, neurotransmitters and their receptors, 

ion transport, GABAergic, glutamatergic and serotonergic synapses, while the second-largest 

module (Module 2, blue, Figure 2.4) consists of mostly upregulated genes involved in 

inflammatory cascades, cytokine signaling and apoptosis. Functional enrichment analysis of 

these upregulated nodes revealed strong enrichment in KEGG inflammatory pathways such as 

PI3K-Akt, MAPK, TNF, NK-kappa B signalling pathways. When cross-referencing the Gene 

ontology terms, cell activation and proliferation, angiogenesis and cell adhesion processes 

appear to be enriched. Chord diagrams in Figure 2.3 and Figure 2.4 represent the most 

significantly enriched pathways and corresponding genes of Module 9 and Module 2, 

respectively, after hierarchical pathway clustering with similarity threshold of 85%.   
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Figure 2.3. Functional enrichment of genes in Module 9 of LOAD coexpression network. The Gene 
Ontology Biological Process terms were hierarchically clustered into parent terms (similarity threshold 
85%).  
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Figure 2.4. Functional enrichment of genes in Module 2 of LOAD coexpression network. The Gene 
Ontology Biological Process terms were hierarchically clustered into parent terms (similarity threshold 
85%).  

In order to construct a transcriptomic signature of AD mouse models we compiled publicly 

available gene expression datasets from most widely used transgenic mouse models. Briefly, a 

systematic search of gene expression profiling data was conducted in the NCBI Gene 

Expression Omnibus with keywords Alzheimer’s Diseases [all synonyms] and mouse [all 

synonyms]. The microarray expression sets from all available AD mouse models (n=17) were 

downloaded. Only datasets which had more than 5 transgenic samples and respective non-

transgenic controls were included.  In the interest of increasing statistical power and robustness 

of the transcriptomic signature, for each mouse model, individual microarray datasets from 
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several experiments (provided they involved mice of comparable age and analysed the same 

brain region) were combined. Only models with at least three available raw datasets were 

included in the analysis (n=4, Table 3). ComBat algorithm within the SVA R package was used 

to correct the expression matrices for experiment-specific batch effects. A gene-level meta-

analysis with random effect model was then conducted for each group, and a combined effect 

size for each differentially expressed gene was calculated. A pathway enrichment analysis was 

then performed for all 4 models based on each DEG list. In order to identify mouse models 

with most transcriptomic overlap with human AD, we calculated the percentage of overlap 

between the homolog genes found to be differentially expressed in the human brain with LOAD 

and the brain of the given mouse model (Table 2.3). Additionally, an overrepresentation 

analysis (ORA) was conducted for each list of DEG to identify the fold change distribution of 

the underlying genes constituting each significantly enriched pathway. The DEG’s and 

enriched pathways of APP/PS1, Tg4510 and 5xFAD mouse lines had substantial overlap with 

those of human LOAD featuring robust inflammatory signature and neurotransmission systems 

(Figure 2.5). Similar to findings from human data, immune system and inflammation related 

pathways were significantly enriched in all 4 mouse models.  

Model name, 
mutation 

Age  
(months) 

Total # 
datasets 

Total # 
samples 

Total #      
DE genes 

Overlap 
mouse/ 
human 

Top enriched  

GO pathways 

APP/PS1 
(APPSwe, 
PSEN1) 

5-6 mo 3 62 833 33.9% 
Chemokine signaling 

MAPK signaling 

TNF signaling 

Tg2576 
(APPSwe) 

10-12 mo 6 74 10 18% Steroid metabolism 

Tg4510 
(MAPT 

tauP301L) 
4-6 mo 4 78 2447 24.6% 

Regulation of action potential 

Cytokine production 

5xFAD 
(APP(Swe, 

Fl,Lon), 
PSEN1(M146L, 

L286V)) 

3-5 mo 4 17 392 36.5% 
Activation of MAPK activity 
Regulation of action potential 

Acute inflammatory response 

Table 2.3. A summary of mouse models used in the meta-analysis and results from gene 
expression profiling. The percent overlap between mouse and human is the percentage of homolog 
genes found to be differentially expressed in the human brain with LOAD and the brain of the given 
mouse model. 
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Figure 2.5. Ridgeline charts of top 20 significantly enriched Reactome gene sets in a) APP/PS1 and 
b) 5xFAD mouse models calculated via GSEA. The X-axis corresponds to the fold change magnitude 
and direction (up or down regulation) for corresponding Reactome pathways shown on Y-axis. The 
circles at the base of each ridge represent the differentially up- or downregulated genes that constitute 
the given pathway.  
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2.4. Discussion 
 The attempts of developing therapeutic agents that combat the progression of AD largely rely 

on the translatability of the mechanisms and the mode of action from mouse models to humans. 

However, pre-clinical models do not always resemble the spectrum of human disease, 

especially in the case of a heterogeneous and multifactorial one such as AD.  These inter-

species differences (i.e., between mice and humans) motivated efforts to develop more relevant 

pre-clinical models, leading towards generation of over 150 genetic mouse models of 

Alzheimer’s disease, each mimicking one or more of the rare mutations in the amyloid 

precursor protein and/or the enzymes that cleave it, resulting in abnormal processing and 

aggregation of amyloid plaques. While no single preclinical model truly recapitulates the 

temporal evolution and the cognitive and neuropsychiatric features of AD pathology as seen in 

human patients, due to the diversity of the available transgenic lines and the variety of 

pathology they represent, there is an opportunity to dissect the distinct facets of the 

pathophysiological mechanisms that lead to neurodegeneration and cognitive decline in the 

setting of AD. The four mouse models investigated in this study differ substantially, and thus 

each of them is better suited for studying a different aspect of AD pathology. Based on our 

results, we conclude that on a systems level, the 5xFAD mouse has the most overlap with the 

human molecular signature of AD, as its transcriptome demonstrated the highest number of DE 

genes and enriched pathways overlapping with those from human LOAD samples, therefore 

we selected the 5xFAD line as a relevant AD model to be used in the subsequent studies of this 

PhD work.  
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CHAPTER 3 
 
INVESTIGATING THE MOLECULAR SIGNATURE OF EPILEPSY: A 
MULTI-OMIC STUDY 

3.1. Introduction 
The most common type of epileptiform activity that AD patients experience are referred to as 

complex partial seizures, or silent seizures, which are usually non-convulsive episodes of 

impaired awareness and unresponsiveness, in some ways similar to absence seizures seen in 

generalized childhood absence epilepsies. 

To explore the potential molecular links between pathways that could mediate the common 

electroencephalographic and behavioural phenotypes seen in the context of AD and absence 

epilepsy, Chapter 3 aims to characterize the molecular signature of a brain that is chronically 

hyperexcitable but does not harbour any amyloid-related mutations. To this end, the well-

established GAERS model of absence epilepsy was utilized. Additionally, given that absence 

seizures involve thalamocortical regions and generally bypass the hippocampus, while the 

seizures seen in AD patients are reported to have focal onset and involve the hippocampal 

circuits, we also investigated the molecular signature of a brain presenting with hippocampal 

onset focal seizures seen in mesial temporal lobe epilepsy (mTLE) by utilizing the post status 

epilepticus model of mTLE.  

3.1.1 Absence epilepsy 
Absence epilepsy syndromes, including childhood absence epilepsy and juvenile absence 

epilepsy, are grouped under the genetic generalised epilepsy (GGE) umbrella by the latest 

classification of the International League Against Epilepsy (ILAE) (Scheffer et al., 2017). 

While some GGE cases have been linked to a single causal gene, the vast majority are presumed 

to have a polygenic architecture (Reid, Berkovic, & Petrou, 2009; Reid, Jackson, Berkovic, & 

Petrou, 2010). This assumption is supported by observations that most patients with GGE do 

not have a strong family history of epilepsy and that siblings of affected individuals have an 

8% risk of developing epilepsy, which is lower that the risk expected for a recessive (25%) or 

dominant (50%) inherited trait (Mullen, Berkovic, & the, 2018; Perucca, Bahlo, & Berkovic, 

2020). 
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The pathophysiological changes leading to absence epilepsy have been studied in various 

animal models (Coenen & van Luijtelaar, 2003; Crunelli & Leresche, 2002). One of the most 

utilised and validated is the Genetic Absence Epilepsy Rats from Strasbourg (GAERS) model, 

derived by selective inbreeding of Wistar rats that expressed spontaneous absence-type seizures 

accompanied by generalised spike and wave discharges on EEG recordings (Marescaux, 

Vergnes, & Depaulis, 1992; Powell et al., 2014; Vergnes et al., 1982). The GAERS model 

shares many behavioural characteristics and pharmacological response profile to anti-seizure 

medication to human absence epilepsy (Danober, Deransart, Depaulis, Vergnes, & Marescaux, 

1998; Devinsky, Schein, & Najjar, 2013; Marks et al., 2016; Vergnes et al., 1982). Absence 

epilepsy involves diffuse, bilateral cerebral regions (Depaulis & Charpier, 2018) and 

predominantly presents in children and adolescents (Depaulis & Charpier, 2018) and as such, 

resective epilepsy surgery is unable to be conducted on these individuals. Therefore, human 

tissue collection from living individuals for research is challenging. To this end, animal models, 

such as the GAERS, are especially important to aid the investigation of novel targeted therapy 

development and have high potential to elucidate the molecular changes underlying disease 

development.  

3.1.2. Temporal lobe epilepsy  
Accounting for almost half of the drug-resistant epilepsies, temporal lobe epilepsy (TLE) is the 

most common form of drug-resistant epilepsy in adults, and is frequently accompanied by 

disabling neuropsychiatric and cognitive comorbidities (B. Hermann, Seidenberg, & Jones, 

2008; B. P. Hermann et al., 2000; Kwan, Schachter, & Brodie, 2011; Sharma et al., 2007; 

Tellez Zenteno, Patten, Jetté, Williams, & Wiebe, 2007). TLE is generally recognized as the 

subtype of epilepsy that has the most overlap in its pathophysiology with AD (Scharfman, 

2012). In addition to electrical abnormalities and cognitive impairment, AD and TLE share 

pathological features such as amyloid deposition (Mackenzie & Miller, 1994), tau pathology 

(Tai et al., 2016; Thom et al., 2011) and hippocampal sclerosis (Davidson et al., 2011). To 

uncover pathology-related molecular pathways in chronic TLE, we used the well-validated 

kainic acid (KA) post-status epilepticus (SE) model of TLE, where animals develop resistance 

to drug treatment, as well as the behavioral, cognitive and sensorimotor comorbidities 

analogous to human drug-resistant TLE (P. M. Casillas-Espinosa et al., 2019; Thomson et al., 

2020).  
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3.1.3. Multi-omic approach 
Integrative systems-level analyses have shown to facilitate more complete investigation and 

comprehensive understating of complex biological systems and heterogeneous diseases like 

epilepsies. Nevertheless, many previous studies aiming to characterise the molecular profile of 

various epilepsy models have generally been constrained to a few molecules, or single “omes” 

such as the genome (Pablo M. Casillas-Espinosa et al., 2017) or proteome (Danış et al., 2011; 

Yuce-Dursun, Danis, Demir, Ogan, & Onat, 2014). These single layer studies are limited to 

only providing details on the dysregulated genes/proteins without any indication about 

potential inter-layer interactions, which are especially pertinent to complex diseases such as 

epilepsy (Schadt, 2009). Identifying causative genetic markers is challenging due to polygenic 

architecture of the GGEs. Additionally, numerous changes can occur after initial gene 

expression, such as epigenetic modifications, that can influence downstream protein expression 

and the function of larger network of biological pathways (Gibney & Nolan, 2010). Thus, the 

proteome and the metabolome can better reflect the observed phenotype, as they provide 

snapshots of all processes that are underway at any given time (Horgan & Kenny, 2011). At 

present, there is a lack of studies investigating changes at these two levels in the context of 

absence epilepsy. We envisaged that integration of these layers would enable the discovery of 

coherent molecular signatures, and identify cellular mechanisms and changes, not present at an 

earlier stage of molecular expression, that are more relevant to disease development. 

Biological systems respond to multiple inputs that vary simultaneously and interact with each 

other in multiple ways, forming complex molecular networks. As such, the use of systems 

biology and network theory methodology to model and characterise these networks can 

elucidate the emergent behaviour of the system.  Over the past decade, there has been growing 

support and evidence for changing the scientific paradigm of disease diagnosis and treatment 

from “single gene – single disease” to a more holistic systems approach, wherein 

groups/modules of genes (as well as gene products and metabolites) and the biological 

pathways they represent define the pathology. Network approaches have been used to identify 

these “disease modules”, study the pathophysiology mechanisms in a wide range of fields (Bell 

et al., 2011; Ciriello et al., 2015; Dejakaisaya, Harutyunyan, Kwan, & Jones, 2021; Bin Zhang 

et al., 2013), and uncover molecular relationships between apparently distinct disease 

phenotypes (Anna Harutyunyan et al., 2022). Their utility in investigating epilepsy pathology 

has also been demonstrated (M. R. Johnson et al., 2015; Oliver et al., 2014). Here, we aimed 

to: a) gain insight into the biological pathways that drive the electrical and behavioural 
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abnormalities seen in absence epilepsy and temporal lobe epilepsy and b) to identify the 

molecular signature associated with seizures in the GAERS and post-SE-TLE models. To this 

end, we conducted behavioural analysis and electroencephalographic (EEG) profiling of 

GAERS and post-SE-TLE rats in relation to their respective control groups, followed by mass 

spectrometry-based proteomic and metabolomic analysis of the brain tissue from both pairs of 

groups. Given that absence epilepsy is a disorder of corticothalamic networks (Snead, 1995), 

we selected the somatosensory cortex (SCx) and thalamus, key regions in this network, for 

proteomic and metabolomic analyses. Conversely, since TLE is characterized with 

hippocampal-onset seizures, we investigated the hippocampus and SCx tissue of post-SE-TLE 

animals.  

Utilizing basic statistical techniques for multisensor data merging and the framework of 

weighted correlation network analysis, we integrated the data from two molecular layers into 

multi-omic networks, which were then clustered into modules of highly correlated proteins and 

metabolites. We then assessed the correlation of these protein-metabolite modules to 

behavioural and seizure outcomes from the GAERS and post-SE-TLE rats, with the aim of 

identifying modules showing strong correlation with the seizure and behavioural phenotypes 

associated with absence epilepsy and TLE. 

3.2 Materials and Methods  
3.2.1. Animals  
All procedures were approved by the Alfred Research Alliance Ethics Committee and adhered 

to the Australian code for the care and use of animals for scientific purposes. All animals where 

individually housed with alternating 12-hour cycles of light and dark (lights on at 07:00h). 

Food and water were provided ad libitum for the whole duration of the study. For absence 

epilepsy study, twenty-four-week-old male GAERS and non-epileptic control (NEC) rats were 

used. For TLE study, eleven-week-old male Wistar rats were used.  

3.2.2. Modified kainic acid-induced post-status epilepticus experimental protocol 
To generate chronic TLE phenotype, a repeated low dose kainic acid (KA ) administration 

protocol was used (Bhandare et al., 2017; P. M. Casillas-Espinosa et al., 2019). Rats were 

intraperitoneally injected with an initial dose of KA 7.5 mg/kg, and continuously monitored 

for behavioural seizures (Racine, 1972). If no continuous seizure activity was observed, another 

i.p. dose of 5 mg/kg followed by 2.5 mg/kg doses of KA were administered up to a maximum 

of 20 mg/kg (Brady et al., 2019).  An animal was eliminated from the experiment if it didn’t 
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show a stable self-sustained SE after a maximum KA dose. Shams were handled identically 

but received saline injections instead of KA. After four hours of sustained SE, as evaluated by 

visual confirmation of behavioural seizures, the animals were given diazepam (5 mg/kg/dose) 

to stop the SE (Bhandare et al., 2017; P. M. Casillas-Espinosa et al., 2023; P. M. Casillas-

Espinosa et al., 2019). Nine weeks after the induction of SE the animals underwent electrode 

implantation surgery.  

3.2.3. EEG Electrode Implantation Surgery 
Twenty-four-week-old male GAERS (n=6) and NEC (n=6) rats, along with twenty-week-old 

post-SE-TLE (n=5) and Sham (n=5) rats underwent EEG electrode implantation surgery under 

aseptic technique as previously described (Pablo M. Casillas-Espinosa et al., 2017; Pablo M. 

Casillas-Espinosa, Sargsyan, Melkonian, & O'Brien, 2019). Briefly, animals were anesthetized 

with isoflurane (Ceva isoflurane, Piramal Enterprises Limited, India), the fur was shaved from 

the skull and a single midline incision was made on the scalp (Casillas Espinosa et al., 2015). 

Four burr holes were drilled through the skull without penetrating the dura, one on each side 

of the frontoparietal region (AP: ±1.7; ML: -2.5), and one on each side of the temporal region, 

(AP: ±5.6; ML: left 2.5) anterior to lambda. Epidural stainless-steel screw recording electrodes 

(EM12/20/SPC, Plastics One Inc) were screwed into each hole. Ground and reference epidural 

stainless-steel screw electrodes were implanted on each side of the parietal bone above the 

cerebellum. The recording electrodes were fixed in position using self-curing dental cement 

(VX-SC1000GVD5/VX-SC1000GMLLQ, Vertex, Australia). The incision was sutured, and 

buprenorphine was administered intraperitoneally (0.05 mg/kg, Indivior Australia).  

3.2.4. EEG Acquisition and analysis  
Animals were connected to the EEG acquisition system 10 days after electrode implantation 

surgery using cables (M12C-363, Plastics One Inc, Australia) that allowed free movement 

around the cage (P. M. Casillas-Espinosa et al., 2019). EEG recordings were acquired 

continuously for 24 hours using Profusion 3 software (Compumedics, Australia), unfiltered 

and digitized at 512Hz. An automatic detection algorithm developed by our group was used to 

detect and quantify seizures (Rui Li, 2021). The detection algorithm decodes the frequency 

spectrum power of the EEG data, one of the most important characteristics of spike-wave 

discharge (SWD) patterns. The SWDs detection module, composed of graph neural network 

and recurrent neural network, aggregates information across both the brain connectivity 

network and EEG temporal sequence. After automatic detection was performed, the total 
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number and duration of SWDs along with average SWD duration were computed. An EEG 

recording was defined as a seizure if the SWD had an amplitude 3-times the baseline with a 

frequency of 7-12 Hz and a duration of more than 0.5 seconds (Pablo M. Casillas-Espinosa et 

al., 2017; Pablo M. Casillas-Espinosa et al., 2019). 

3.2.5. Behavioural Tests 
To evaluate the behavioural comorbidities reported in GAERS and TLE rats, we used the 

widely validated open field test (OFT) and sucrose preference test (SPT) as previously 

published (P. M. Casillas-Espinosa et al., 2023; P. M. Casillas-Espinosa et al., 2019; Jones et 

al., 2008). Additionally, since hippocampal- based memory impairments were reported in TLE, 

we subjected the post-SE-TLE rats to the novel object recognition (NOR) and novel placement 

object (NPO) tests to assess their spatial memory performance. All tests were performed in a 

light-controlled (~110 lux), closed, quiet and clean room between 9 am and 5 pm. Animals had 

at least one hour to acclimatize to the room prior to testing. Testing was performed in a blinded 

manner to strain. The OFT is a 100 cm diameter circular arena, with an inner circle arena of 66 

cm in diameter. For each test, the rat is placed gently into the centre of the field and its 

behavioural activity filmed from above for 10 minutes. The distance travelled, and the entries 

and time spent in the inner circle were objectively assessed from the video feed using 

Ethovision software (Version 3.0.15, Noldus, Netherlands) (P. M. Casillas-Espinosa et al., 

2019; Johnstone et al., 2015; Jones et al., 2008). The SPT was performed 48 hours after OFT 

completion. Animals remained in their home cage throughout the testing period. One hour 

before testing, animals were given up to 0.5 ml of 2% sucrose to familiarise them to the taste.  

Animals were then presented with two bottles, one filled with tap water and the other with 2% 

sucrose solution for 24 hours (P. M. Casillas-Espinosa et al., 2019). Bottle position was 

randomized to avoid position preference (P. M. Casillas-Espinosa et al., 2019; Jones et al., 

2008; Sarkisova, Midzianovskaia, & Kulikov, 2003). Total fluid intake and percentage 

preference for sucrose were recorded. 

3.2.6. Tissue Preparation 
Animals were anesthetised using 5% isoflurane and subsequently euthanised via 150 mg/kg 

pentobarbitone sodium intraperitoneal injection (Lethabarb, Virbac, Australia). The thalamus 

and SCx were rapidly harvested, snap frozen in liquid nitrogen and stored at -800C. 

Approximately 30mg of tissue was cryogenically pulverized using a 12-well biopulverizer 
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(BioSpec Products, OK USA Part number 59012MS) according to manufacturer’s instructions. 

The biopulverizer and pestles were cooled in liquid nitrogen. Frozen samples were added to a 

well and pulverized by sharply striking the pestle four to five times with a mallet.  Powdered 

tissue was transferred into a cold Eppendorf tube.  Resulting tissue was split into two portions 

for proteomic and metabolomic analysis. 

3.2.7. Proteomic analysis using LC-MS/MS 
30mg of tissue from each region was processed. Powdered samples were lysed in 4% SDS, 100 

mM Tris (pH8.1, 95°C, 10 minutes) and sonicated. Lysate was cleared by centrifugation 

(16,000 g, 10 minutes) and protein concentration was determined using Pierce™ BCA Protein 

Assay Kit (Thermo). Equal amount of protein was denatured and alkylated using Tris(2-

carboxyethyl)-phosphine-hydrochloride and 2-Chloroacetamide (final concentration of 10 mM 

and 40 mM, respectively), and incubated (95°C, 5 minutes). Proteins were precipitated using 

chloroform/methanol followed by sequencing grade trypsin digestion (37°C, overnight, 

enzyme to protein ratio of 1:100). Digestion was stopped by adding formic acid (concentration 

of 1%). Peptides were cleaned with BondElut Omix Tips (Agilent) and concentrated in a 

vacuum concentrator prior to MS analysis.  

Using a Dionex UltiMate 3000 RSLCnano system equipped with a Dionex UltiMate 3000 RS 

autosampler, samples were loaded via an Acclaim PepMap 100 trap column (100 µm x 2 cm, 

nanoViper, C18, 5 µm, 100å; Thermo Scientific) onto an Acclaim PepMap RSLC analytical 

column (75 µm x 50 cm, nanoViper, C18, 2 µm, 100å; Thermo Scientific). Peptides were 

separated by increasing concentrations of 80% ACN/0.1% FA at a flow of 250 nl/min (158 

minutes) and analyzed with QExactive HF mass spectrometer (Thermo Scientific) operated in 

data-independent acquisition (DIA) mode. Sixty sequential DIA windows (isolation width: 10 

m/z) were acquired (375 - 975 m/z) (resolution: 15.000; AGC target: 2e5; maximum IT: 9 ms; 

HCD Collision energy: 27%) following a full ms1 scan (resolution: 60.000; AGC target: 3e6; 

maximum IT: 54 ms; scan range: 375-1575 m/z). Acquired DIA data were evaluated in 

Spectronaut 13 Laika (Biognosys) using in-house spectral library derived from the same brain 

samples. Multi-dimensional scaling was undertaken to identify outliers. Differential expression 

analysis was conducted using R Studio (version 1.2.5033) and R’s (version 3.6.3) limma 

package on log-transformed intensity values (Ritchie et al., 2015).  
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3.2.8. LC-MS Untargeted Metabolomic analysis 
Remaining pulverized frozen tissue was weighed by transferring to a fresh eppendorf tube and 

20 µL of extraction solvent (2:6:1 CHCl3:MeOH:H2O v/v/v, internal standards: 2 µM CHAPS, 

CAPS, PIPES and TRIS)  (0°C) per mg of tissue was immediately added.  The mixture was 

briefly vortexed before sonication in an ice-water bath (10 minutes) followed by centrifugation 

(20,000xg, 4℃, 10 minutes). Supernatant was transferred to a MS vial for analysis. A Dionex 

RSLC3000 UHPLC coupled to a Q-Exactive Orbitrap MS (Thermo) was used. Samples were 

analysed by hydrophilic interaction liquid chromatography (HILIC) following a previously 

published method (Stoessel et al., 2016). The chromatography utilized a ZIC-p(HILIC) column 

5µm 150 x 4.6 mm with a 20 x 2.1 mm ZIC-pHILIC guard column (both Merck Millipore, 

Australia) (25 °C). A gradient elution of 20 mM ammonium carbonate (A) and acetonitrile (B) 

(linear gradient time-%B: 0 min-80%, 15 min-50%, 18 min-5%, 21 min-5%, 24 min-80%, 32 

min-80%) was utilized.  Flow rate was maintained at 300 μL/min. Samples were kept in the 

autosampler (6°C) and 10 μL was injected for analysis. MS was performed at 35,000 resolution, 

operating in rapid switching positive (4 kV) and negative (−3.5 kV) mode electrospray 

ionization (capillary temperature 300°C; sheath gas flow rate 50; auxiliary gas flow rate 20; 

sweep gas 2; probe temp 120°C). Samples were randomised and processed in a single batch 

with intermittent analysis of pooled quality-control samples to ensure reproducibility and 

minimise variation. For accurate metabolite identification, a standard library of ~300 

metabolites were analysed before sample testing and accurate retention time for each standard 

was recorded. This standard library also forms the basis of a retention time prediction model 

used to provide putative identification of metabolites not contained within the standard library 

(Darren J. Creek et al., 2011). Acquired LC-MS/MS data was processed in an untargeted 

fashion using open source software IDEOM, which initially used ProteoWizard to convert raw 

LC-MS files to mzXML format and XCMS to pick peaks to convert to .peakML files (D. J. 

Creek, Jankevics, Burgess, Breitling, & Barrett, 2012). Mzmatch.R was subsequently used for 

sample alignment and filtering (Scheltema, Jankevics, Jansen, Swertz, & Breitling, 2011). 

IDEOMwas utilised for further data pre-processing, organisation and quality evaluation (D. J. 

Creek et al., 2012).  Raw peak intensity values of metabolites which passed the RT error check 

were included in the final data matrix for statistical analysis. Peak intensity values were log-

transformed, quantile normalized and unit-variance scaled to achieve normal distribution. 

Principal component analysis was conducted to identify and remove outliers prior to further 

statistical analysis. To identify differences in metabolite abundance between strains, the fold 
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changes of each metabolite were calculated and compared via unpaired t-test between the 

groups. For both proteomics and metabolomics, p-values associated with the t-tests were 

corrected for multiple comparisons using the Bejamini-Hochberg method, and significance 

threshold was set to FDR<0.05 (Benjamini & Hochberg, 1995). 

3.2.9. Multi-omic data integration and Weighted Gene Co-expression Network 
Analysis (WGCNA) 
To integrate proteomic and metabolomic data for network analysis, we unit-variance scaled 

and concatenated the normalized data into a single matrix for each cerebral region. Unit-

variance scaling uses standard deviation as the scaling factor, thus, the resultant integrated data 

can be analysed based on correlations (Jackson, 1991). Correlation-based multi-omic networks 

were then constructed by employing the framework of WGCNA. An adjacency matrix was 

constructed reflecting the pairwise Pearson correlations between all detected proteins and 

metabolites across all samples in each dataset. Correlation networks for each brain region were 

built based on respective adjacency matrices. In these networks, each node corresponds to a 

single molecule and the edges between nodes represent the correlation between the relative 

abundance of the given metabolite/protein across all samples. An average linkage hierarchical 

clustering algorithm was employed to identify metabolite/protein modules (arbitrarily labelled 

by colour). Central regulatory hubs were determined for each module by identifying the node 

with highest degree centrality (largest number of connections to other nodes) and most 

significant correlation to the first principal component associated with the module. For each 

network, the correlation of modules to the experimental groups (GAERS vs NEC, TLE vs 

Sham), seizure phenotype and cognitive performance was assessed through Pearson correlation. 

To assess overlaps in module composition of the  networks representing each cerebral region, 

a cross-tabulation based approach was employed to generate contingency tables reporting the 

number of overlapping proteins/metabolites (Langfelder, Luo, Oldham, & Horvath, 2011). 

Overlap significance (whether the number of overlapping proteins/metabolites is larger than 

expected by chance) was assessed through Fisher’s exact test.  

3.2.10. Enrichment analysis 
Enrichment analysis was carried out using various publicly available web tools and packages 

implemented in the R/RStudio environment. For single-omics enrichment analysis, 

MetaboAnalyst 5.0’s quantitative enrichment analysis module was used (Z. Pang et al., 2021) 

for metabolomic data and the PADOG (Pathway Analysis with Down-weighting of 

Overlapping Genes) module of Reactome (Fabregat et al., 2018; B. Jassal et al., 2020) was 
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used for proteomic data. To functionally annotate the protein-metabolite modules identified by 

WGCNA we employed the joint pathway analysis module of MetaboAnalyst 5.0 (Z. Pang et 

al., 2021). This analysis uses both proteins and metabolites in a single query and is based on 

weighted data integration to address the issue of genes/proteins overwhelming the integrated 

pathway analysis results due to significantly different sizes of genomic/transcriptomic and 

metabolomic pathway databases.  

3.3. Results - Absence epilepsy study (GAERS) 
3.3.1. Behavioural testing and electroencephalography (EEG) recordings confirm 
epileptic phenotype in the GAERS group. 
EEG analysis showed that twenty-four-week-old male GAERS experienced on average, around 

200 seizures in the 24-hour EEG period, each lasting for ~7 seconds on average (Figure 3.1.a), 

while the age and sex matched NEC rats did not display any seizures (Figure 3.1 a, b, c). 

Behavioural testing also confirmed that the GAERS exhibited increased anxious behaviour, 

measured by the open field test (OFT). Compared to the NECs, the GAERS had decreased 

number of entries (p=0.037) and time spent in the centre of the open field (p=0.008) (Figure 

1d). Further, the GAERS also showed a decreased preference for sucrose compared to NECs 

(p=0.026, Figure 3.1.e), which is indicative of anhedonic-like behaviour.  
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Figure 3.1. The EEG profile, seizure and behavioural outcomes observed in GAERS and NEC 
groups. (a) A recorded example of the characteristic EEG trace of the GAERS and NEC rats. (b-e) A 
t-test was used for all comparisons, data shown as mean with SEM, significance indicated with an 
asterisk (*) at p<0.05; (b) The number of seizures observed for individual rats.  (c) The average time 
spent in seizures for individual rats. (d) The amount of time spent in the centre of the open field. (e) 
The percentage of sucrose preference. 
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3.3.2. Proteomic analysis identifies various differentially expressed proteins in the 
GAERS group.  
We used untargeted proteomics to identify differentially expressed proteins in GAERS and 

NEC rats. In the SCx, 102 differentially expressed proteins were identified. From these, 55 

proteins were found to be upregulated in GAERS compared to NEC, while 47 were 

downregulated (Figure 3.2a). In the thalamus, 123 proteins were identified as differentially 

expressed (Figure 3.2.b), with 74 upregulated and 49 downregulated in GAERS compared to 

the NEC. The top 10 differentially expressed proteins in the SCx and thalamus are listed in 

Table 1 and Table 2, respectively. Amongst the differentially expressed proteins, 53 were 

common between the two cerebral regions (Figure 3.2.c). Pathway Analysis with Down-

weighting of Overlapping Genes (PADOG) indicated upregulation of pathways involved in 

oxidation and metabolism/clearance of neurotransmitters and their precursors in both brain 

regions (Figure 3.2. d, e).  

3.3.3. Metabolomic analysis identifies differentially abundant metabolites and 
significantly enriched metabolic pathways in the GAERS group.  
Similar to proteomics, untargeted metabolomics data were acquired using high-resolution mass 

spectrometry (MS) from the same brain regions of GAERS and NEC. After initial filtering and 

normalization, 897 metabolites were included in the statistical analysis (criteria: Fold-change 

> 1.5; FDR<0.05). In the SCx, 57 metabolites were found to have significantly different 

abundance between strains, amongst which 27 showed a decrease and 30 showed an increase 

in GAERS (Figure 3.3.a). In the thalamus, 45 metabolites had significantly different 

abundance, with 23 decreased and 22 increased in GAERS compared to NEC (Figure 3.3.b). 

Amongst the differentially abundant metabolites, 29 were common between the two cerebral 

regions (Figure 3.3.c). Metabolite set enrichment analysis (MSEA) showed significant 

enrichment in several amino acid metabolic pathways, galactose metabolism, glycolysis, and 

lysine degradation in both brain regions (Figure 3.3.d, e).   
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Figure 3.2. Proteomic profiling of the somatosensory cortex (SCx) and thalamus of GAERS compared to 
NEC. Top: Volcano plots showing the changes in the abundance of all quantified proteins (log2FC, x-axis) and 
their statistical significance (-log10(q value), y-axis) in GAERS relative to NEC in the (a) SCx and (b) thalamus. 
The upregulated proteins in GAERS compared to NEC are shown in red and downregulated proteins are in blue. 
(c) Venn diagram showing the differentially expressed proteins that are region-specific or common between SCx 
and thalamus of GAERS. Bottom: Differentially regulated pathways identified in the (d) SCx and (e) thalamus of 
GAERS, based on the PADOG analysis. The log2FC (x-axis) indicates the direction of regulation (log2FC>0 
upregulated, log2FC<0 downregulated) of the whole pathway in GAERS relative to NEC.  
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Figure 3.3. Metabolomic profiling of the SCx and thalamus of GAERS compared to NEC. Top: Volcano plot 
of the –Log10(Pvalue) vs Log2FC of all identified metabolites in GAERS relative to NEC in the (a) 
somatosensory cortex and (b) thalamus with the metabolites showing increased abundance in GAERS compared 
to NEC in red and those with decreased abundance in GAERS compared to NEC in blue. (c) a Venn diagram 
showing the differentially abundant metabolites that are region-specific or common between SCx and thalamus 
of GAERS. Bottom: The enriched pathways identified in the (d) SCx and (e) thalamus of GAERS, based on the 
metabolite-set enrichment analysis (MSEA).  
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3.3.4. Modules with varying correlations to GAERS and seizure phenotype identified 
in the multi-omic networks from SCx and thalamus  
To represent the proteome and metabolome of GAERS and NEC in the context of a network, 

we leveraged the general framework of Weighted Gene Coexpression Network Analysis 

(WGCNA) to integrate the proteomic and metabolomic datasets into two multi-omic 

correlation networks, each representing the respective brain region. In these networks, each 

node corresponds to a single molecule (metabolite/protein) and the edges between nodes 

represent the correlation between the relative abundance of the given molecule across all 

samples. A hierarchical clustering algorithm identified 22 distinct protein-metabolite modules 

of various size, density and connectivity (Figure 3.4.a, c) in both SCx and thalamic networks.  

Each module of the given network was uniquely annotated by colour. We then assessed the 

correlation strength of each module to the strain (GAERS vs NEC), various seizure parameters 

and behavioural outcomes from rats in both groups. In the SCx network, the Blue module 

showed the strongest and most significant (PCC=1, p=2x10-10) correlation with the GAERS 

strain. It also showed strong correlation to longer average seizure duration (PCC=0.98, p=1x10-

7) and higher seizure frequency (PCC=0.81, p=0.003) (Figure 3.4.b). This module is 

functionally enriched for multiple pathways, including ‘aminoacyl-tRNA biosynthesis’, ‘ABC 

transporters’, and ‘protein digestion and absorption’. Glutathione S-transferase mu 1 (Gstm1) 

was identified as the central regulatory hub of this module. Gstm1 is one of the top upregulated 

proteins in SCx (FC=4.6, FDR=1.8E-8). It is noteworthy that with the exception of three 

proteins, all of the differentially expressed proteins identified in the SCx, regardless of 

expression levels, belong to the Blue module. This suggests that the concerted action of these 

proteins and their coregulation is drastically altered in the brain of GAERS compared to NECs.  

WGCNA analysis of the thalamic datasets revealed 22 modules (Figure 3.4. c, d). Again, there 

was one module that was highly correlated with the GAERS (PCC=1, p=1x10-12).  It was 

strongly correlated with longer average duration (PCC=0.98, p=2x10-8) and higher frequency 

of seizures (PCC=0.83, p=9x10-4). This module, co-incidentally also labelled Blue, was 

enriched for numerous pathways implicating synaptic signalling and plasticity, and the 

metabolism of various neurotransmitters and amino acids. Interestingly, several significantly 

enriched thalamic pathways including: ‘lysine degradation’, ‘ABC transporters’, and 

‘aminoacyl-tRNA biosynthesis’, were also significantly enriched in the SCx. Aldehyde 

dehydrogenase 2 family member (Aldh2) was found to be the central hub of this module. Aldh2 

is one of the top upregulated proteins in the thalamus of GAERS (FC=5.4, FDR=7.34x10-13) 
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and is involved in the metabolism of aldehydes produced by lipid peroxidation such as ethanol 

and 4-hydroxy-2-noneal (4-HNE) (C.-H. Chen, Ferreira, Gross, & Mochly-Rosen, 2014). 

Figure 3.4. WGCNA of integrated multi-omic data from somatosensory cortex and thalamus. 
Left: Hierarchical cluster dendrogram of a) SCx and c) thalamic correlation networks. Each vertical 
line in the dendrogram represents a single protein/metabolite, with the arbitrarily assigned colour of 
their respective modules at the bottom. Right: Heatmap of all modules (x axis) identified via WGCNA 
in b) SCx and d) thalamus and their corresponding Pearson correlation to phenotypic traits (y axis). 
Each block in the heatmap shows the direction (red: positive, blue: negative), strength (top coefficient) 
and significance (in brackets) of the Pearson correlation of the given module to the GAERS strain, 
seizure parameters, and behavioural outcomes. 

3.3.5. Seizure-associated modules show overlap in SCx and Thalamus 
To disentangle the region-specific and global signatures associated with the GAERS, we 

conducted an overlap analysis between all 22 modules from both cerebral regions to reveal 

common proteins and metabolites constituting each SCx and thalamic module. Notably, the 

most significant (p=3.9x10-46) overlap with 189 proteins/metabolites was between the GAERS-

associated Blue modules from the respective SCx and thalamic networks (Figure 3.5.a). Joint 

pathway analysis of the overlapping proteins/metabolites revealed enrichment in several 

pathways, with “lysine degradation” and “Aminoacyl-tRNA biosynthesis” as the most 

significantly enriched (FDR=0.0073, Figure 3.5.b). Since the Blue modules in both networks 

show strong correlation with seizures, anxious and anhedonic-like behaviour - all of which are 



 

 

 64 

characteristic of absence epilepsy, we conclude that these modules are the most significant 

determinants of the molecular signature associated with the absence seizure phenotype the 

GAERS exhibit. Therefore, our subsequent analyses focus on these two modules.  

Figure 3.5. The overlap between cortical and thalamic modules. (a) A contingency table of 
overlapping proteins/metabolites between all pairs of cortical (X axis) and thalamic (Y axis) modules. 
Each block in the table shows the number of overlapping proteins+metabolites in the intersection of 
corresponding cortical and thalamic modules. The table is colour-coded with -log10 of the P value 
associated with the Fisher exact test. (b) A Venn diagram depicting the enriched pathways as 
determined by the joint pathway enrichment analysis of the region-specific and common/overlapping 
proteins+metabolites from the seizure-associated Blue modules. The diagram is colour-coded with the 
number of region-specific and common proteins+metabolites in the two Blue modules.  

a) 
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3.3.6. Quantitative enrichment analysis of the seizure-associated modules identifies 
various differentially regulated pathways  
To identify specific seizure-associated dysregulated pathways, we carried out quantitative 

enrichment analysis on the proteins comprising the seizure-associated Blue modules in both 

the SCx and thalamus. Using the PADOG (Pathway Analysis with Down-weighting of 

Overlapping Genes) module of Reactome database (Fabregat et al., 2018; B. Jassal et al., 2020) 

we identified over 700 differentially regulated pathways in both cerebral regions. The top 

upregulated pathways in the GAERS were involved in synthesis, transport and clearance of 

neurotransmitters, synaptic signalling, and oxidative processes (Figure 3.6.a, b). Conversely, 

the pathways that were downregulated in the GAERS compared to the NEC were involved in 

lysine catabolism, GTPase cycle, breakdown of galactose and glycogen, necrosis regulation 

and the innate immune system (Figure 3.6.a, b).  

Figure 3.6. Enrichment analysis of proteins from seizure-associated Blue modules. Differentially 
regulated pathways in the Blue module from (a) the SCx and (b) thalamus identified via PADOG 
analysis. Significance threshold was set to FDR<0.05. The log2FC (x-axis) indicates the direction of 
regulation (log2FC>0 upregulated, log2FC<0 downregulated) of the whole pathway in GAERS relative 
to NEC. 
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3.4. Results – Temporal lobe epilepsy study (TLE) 
3.4.1. Proteomic analysis identifies differentially expressed proteins in post SE-TLE 
rats.  
In the same manner as in GAERS study, untargeted proteomics and metabolomics analyses 

were carried out in the somatosensory cortex and hippocampus of post-SE-TLE and sham 

groups using the methodology described in sections 3.2.1-3.2.8 to identify potential markers 

of TLE in the hippocampal and cortical proteome and metabolome of post-SE rats. A total of 

5615 and 5538 proteins were identified and quantified across all samples in the somatosensory 

cortex and hippocampus, respectively, considering a false discovery rate (q-value) cut-off of 

1%. Differential expression analysis between post-SE-TLE and sham groups revealed 14 

proteins in the hippocampus and 20 proteins in the somatosensory cortex to be significantly 

different across experimental conditions (Figure 3.7).  Among the top upregulated proteins in 

the somatosensory cortex of post-SE-TLE rats were signal transduction proteins (Gnal, Chgb), 

gliosis markers (GFAP, Bmerb1) and heat-shock proteins (Hspha2, Hsph1). Astrogliosis 

markers were also upregulated in the hippocampus (GFAP and Vim) along with cell stress-

related proteins (Hspa2, Itgb1, Map3k4). 

 

Figure 3.7. Differential expression analysis of all detected proteins in a. hippocampus and 
b. somatosensory cortex of post-SE-TLE rats compared to shams. Red marks proteins with 
significantly increased abundance, and blue marks proteins with decreased abundance. 
Significance threshold was set to FDR< 0.05, Fold Change > 2.  
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3.4.2. Integrative network analysis identifies discrete protein-metabolite modules 
correlated with TLE 
 

Using the methodology described in section 3.2 we integrated the untargeted multi-omics 

(proteomics and metabolomics) datasets with the behavioural and EEG data (seizure severity, 

cognitive and sensorimotor outcomes) to investigate protein-metabolite groups/pathways 

correlated with the post-SE-TLE phenotype. Weighted correlation network analysis identified 

20 and 17 protein-metabolite modules, respectively, in the hippocampal and cortical multi-

omic datasets. Several protein-metabolite modules showed significant positive and negative 

correlations with the TLE group and EEG/behavioural traits (Figure 3.8), representing distinct 

proteomic responses to TLE pathology. Each module was labelled based on its principal 

biology identified via joint pathway enrichment analysis (described in section 3.2.10). 

In the hippocampal network, the focal adhesion (navy), endocytosis (black), syndecan 

interactions (gray), proteasome (green) and neuron projections (salmon) modules were 

significantly positively correlated with TLE phenotype. In the somatosensory cortex 

correlation network, the vesicle transport (green), RNA transport (purple) and endomembrane 

system (gray) modules were significantly correlated with the TLE group and seizure frequency 

(Figure 3.8b). Additionally, the vesicle transport and endomembrane system modules are 

negatively correlated with hippocampus-dependent memory performance, as measured by the 

novel object placement test. In both brain regions synaptic signalling-related modules show a 

robust trend towards downregulation. Specifically, the trans-synaptic signalling modules in 

both SCx and Hippocampal networks as well as cortical long term potentiation (red), ABC 

transporters (black) and hippocampal circadian entrainment (magenta) modules are negatively 

correlated to TLE group.  
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Figure 3.8.  Module-trait correlation heatmap. The relationship of protein-metabolite modules (in 
the Y axis) with measured clinical traits (X axis) in the a. hippocampus and b. somatosensory cortex of 
post-se-TLE rats. Each square block shows the Pearson correlation coefficient (PCC) of each module 
with the clinical traits as well as the associated P value in brackets. The PCC values range from -1 to 1, 
depending on the strength and direction of the correlation.  
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3.5. Discussion  
Dimension reduction is crucial for hypothesis generation to elucidate pathological mechanisms 

and changes in biological pathways as a response to treatment. To identify epilepsy associated 

disease modules, we performed a network medicine integration of our untargeted/targeted 

multi-omics datasets and phenotypic outcomes (seizures and behavior) to evaluate the 

correlation coefficients of single modules between the different treatment groups and 

phenotypic traits. By mapping significant genes/proteins together with metabolites to 

biological pathways, the network integration allowed for reduction in experimental and 

biological noise and higher confidence levels, thereby generating potential new disease 

modules that show a strong relationship with epilepsy phenotype.  In this study, we demonstrate 

the utility of a network-based, integrative multi-omics approach to interrogate the molecular 

signatures associated with absence epilepsy and TLE.  

In the TLE study, upon closer examination of the biological pathways that each protein-

metabolite module annotates to, we found that the majority of the modules in both hippocampal 

and cortical TLE networks (Figure 3.8) fall into two categories: they are either pathology 

related, or homeostatic. For example, the hippocampal neuron projections (Figure 3.8a, 

salmon) module is positively correlated to epilepsy phenotype, more frequent and severe 

seizures, and is enriched for cardiomyopathy disease ontology terms, which have been shown 

to be associated with several epilepsy syndromes (O. Devinsky et al., 2018; Gilchrist, 1963; 

Naggar, Lazar, Kamran, Orman, & Stewart, 2014; Stöllberger, Wegner, & Finsterer, 2011; 

Surges & Sander, 2012). In contrast, the circadian entrainment module (Figure 3.8a, magenta) 

is negatively correlated to TLE phenotype, and shows positive correlation towards homeostatic 

behaviours as measured by NPO, NOR and sucrose preference tests. This suggests that the 

proteins and metabolites (as well as the cellular pathways they are involved in) that constitute 

the “healthy state” operate in a concerted fashion in a healthy brain but are lost in the setting 

of TLE. 

In the absence epilepsy/GAERS study traditional linear analysis of single-omics data provided 

large lists of differentially abundant proteins and metabolites, however, when the two omics 

layers were integrated into a network along with behavioural and EEG data relevant to the 

disease phenotype, a single distinct protein-metabolite module that defines the molecular 

signature of absence seizures was identified in each brain region. The strong correlation of 
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these two Blue modules (Figure 3.4) with the GAERS strain and more frequent seizures in both 

the SCx and thalamic correlation networks provide further support for its association with 

epilepsy and identify it as a “seizure-associated disease module”.  Interestingly, almost all of 

the differentially expressed proteins and a large number of differentially abundant metabolites 

identified were represented in the seizure-associated Blue module in both regions. Overlap 

analysis of SCx and thalamic multi-omic networks revealed that the two seizure-associated 

modules have a large number of proteins and metabolites in common, and share numerous 

enriched pathways, indicating potential global mechanisms affected across both brain regions 

in epileptic animals. By conducting a joint pathway enrichment analysis which uses both 

proteins and metabolites in a single query, we generated a smaller list of enriched pathways 

which were further investigated. Additionally, we conducted quantitative pathway analysis 

(PADOG) through Reactome resource, which indicated the direction (upregulated vs 

downregulated) of changes in the significant pathways. Reactome and PADOG were preferred 

over other pathway analysis types and resources due to several advantages. Firstly, Reactome 

is a manually curated database and thus, the included pathways have all been experimentally 

verified (Bijay Jassal et al., 2020). Secondly, the PADOG method addresses the issue of 

exaggerated significance assigned to genes/proteins which appear in a large number of 

pathways by assigning more weight to those that are gene set-specific. Thus, if the gene sets 

that are highly specific to the seizure-associated pathways are differentially regulated, it is more 

likely that these pathways are truly relevant to absence epilepsy pathology.  

The majority of differentially regulated pathways from the seizure-associated modules indicate 

an increase in synaptic transmission and metabolism of neurotransmitters. Given the increased 

synchrony in neuronal firing in the context of absence epilepsy, these results are expected.  

However, the most notable characteristic feature of the molecular signature associated with 

GAERS elucidated by our analyses is the dysregulation of the lysine degradation pathway. 

Lysine degradation is the top commonly enriched pathway in the SCx and thalamus of the 

GAERS (Figure 3.5.a). Mainly localised to mitochondria, lysine degradation provides 

substrates such as glutamate and acetyl-CoA for downstream metabolic cascades (Leandro & 

Houten, 2020). Currently, there are no links between absence epilepsy and lysine degradation 

dysregulation, however, perturbations in this pathway have been linked to pyridoxine-

dependent epilepsy (PDE) (Leandro & Houten, 2020; van Karnebeek et al., 2012). Specifically, 

genetic mutations affecting ALDH7A1 activity (which is involved in cerebral lysine 
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catabolism) have been identified as the genetic cause of PDE (van Karnebeek et al., 2012). 

ALDH7A1 is part of the aldehyde dehydrogenase superfamily that includes ALDH2 – the 

central regulatory hub of the thalamic seizure-associated module. Several of the substrates 

generated through lysine degradation are necessary for synthesis of Glutathione (GSH) – a 

tripeptide consisting of glutamate, cysteine and glycine (Glu-Cys-Gly). Glutathione is an 

important anti-oxidant in the mammalian brain that protects cells from damaging effects of free 

radicals by conjugating with various reactive oxygen species and electrophiles (Meister, 1988). 

The conjugation of glutathione is catalysed by Glutathione-S transferases (GSTs) – a family of 

phase II detoxification enzymes which includes GSTM1, the regulatory hub of the seizure 

associated module in the SCx (Oakley, 2011; Townsend & Tew, 2003). According to our 

metabolomic data, the concentration of GSH (Glu-Cys-Gly) is significantly decreased 

(Log2FC=-2.3, FDR=0.038) in the thalamus of GAERS, and shows a trend towards decrease 

in SCx (Log2FC=-0.13, FDR=0.2). The reduced concentration of GSH in both the SCx and 

thalamus hint towards a potential perturbation of oxidative stress balance in absence epilepsy. 

We postulate that in response to dysregulated lysine catabolism and increased oxidative burden, 

a compensatory “rewiring” of the downstream signalling pathways occurs in the GAERS brain, 

which is modulated by Aldh2 and Gstm1 – the regulatory hubs of the seizure associated 

modules. This is further supported by our findings that Aldh2 and Gstm1 were among the top 

differentially expressed proteins in the GAERS strain. We speculate that on one hand, due to 

downregulated lysine catabolism and accumulation of L-lysine, there is a compensatory 

increase in aldehyde dehydrogenase activity mediated by Aldh2. On the other hand, due to 

increased synchronisation of neuronal firing and shortage of GSH, there is higher oxidative 

burden and accumulation of ROS in the GAERS brain, which leads to compensatory increase 

in glutathione-S-transferase (GST) activity, mediated by Gstm1 and other GSTs. While no 

association between GSTM1 and absence epilepsy has previously been identified, individuals 

with drug-resistant epilepsy and a defect in GSTM1 enzymatic activity have increased levels 

of lipid peroxidation markers, compared to non-epileptic controls and epileptic individuals with 

normal GSTM1 activity (C.-S. Liu & Tsai, 2002). Oxidative stress is widely recognized as a 

contributor of epileptogenesis (Patel, 2018; Pearson-Smith & Patel, 2017), and while we have 

recognised it as a defining feature of the molecular signature of absence epilepsy, oxidative 

stress could be both the cause and the consequence of pathophysiology development.  
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It has been shown previously that modularity is a conserved property of biological systems and 

the cellular functions are carried out by highly connected modules of genes, proteins and 

metabolites (Oldham, Horvath, & Geschwind, 2006; Oldham et al., 2008). These functional 

modules tend to be extremely heterogeneous, wherein the majority of the nodes have relatively 

few connections with other nodes, while a few “hub” nodes are highly connected and therefore 

are considered important regulators of the given module (Ravasz, Somera, Mongru, Oltvai, & 

Barabasi, 2002). Gstm1 and Aldh2 were identified as the regulatory hubs of the seizure-

associated module in the SCx and thalamus of GAERS, and therefore have the potential of 

influencing the larger molecular network they regulate, making them potential biomarkers of 

absence epilepsy and promising candidates for pharmacological manipulation. 

It is important to note that most of the biological pathway databases used in this study were 

curated using information gleaned from human studies. As such, their translatability to a rat 

model of epilepsy is assumed, but not verified. However, due to the lack of available databases 

utilising information obtained from rodent studies, these databases represent the best available 

resource, as they are continuously updated with the most relevant and accurate information 

available. While the results obtained from this study were promising, to the best of our 

knowledge, many of these pathways and molecules have not been described in the context of 

absence epilepsy. Therefore, further experimental validation is necessary to establish these 

pathways and associated proteins and metabolites as being implicated in absence epilepsy. 

Overall, our study identifies novel pathways and regulatory hubs with strong potential as 

candidate biomarkers and treatment targets for drug repurposing and development. 
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CHAPTER 4 
 
DYSREGULATED SYNAPTIC MODULES IDENTIFIED BETWEEN 
ALZHEIMER’S DISEASE AND TEMPORAL LOBE EPILEPSY: A 
NETWORK PRESERVATION STUDY 
Alzheimer’s Disease and Epilepsy are complex diseases, that likely involve combinations of 

more than one dysregulated biological pathway or mutation. It is, however, possible to extract 

enough gene expression information from affected tissues in order to construct a representative 

network of gene groups and biological pathways that describe the pathology of these conditions 

with reasonable accuracy.  Therefore, we aimed to gain insight into the underlying 

pathophysiological mechanisms potentially shared between epilepsy and AD patients by 

exploiting the emerging high throughput and computational methodologies. A hypothesis-free, 

systems-level approach was used to characterize each pathology on a molecular level by 

constructing data-driven gene coexpression networks representing AD and temporal lobe 

epilepsy – the most common type of epilepsy comorbid to AD.  

4.1. Introduction 
In the past 50 years, it has become apparent that there is increased prevalence of epileptic 

seizures in patients with AD compared to the general population (Hauser et al., 1986; 

Hesdorffer et al., 1996; McAreavey, Ballinger, & Fenton, 1992; Volicer, Smith, & Volicer, 

1995; K. A. Vossel et al., 2013), but only recently have there been well-designed studies 

attempting to understand this link (Miranda & Brucki, 2014; K. A. Vossel et al., 2017). A 2006 

study reported that patients with AD have ~10-fold increased risk of developing seizures, with 

early onset or familial AD patients having as high as 87-fold higher risk (Amatniek et al., 2006). 

These patients show more severe cognitive impairment (McAreavey et al., 1992) and rapid 

disease progression (Volicer et al., 1995). In AD patients, epileptiform activity is commonly 

detected in temporal brain regions (K. A. Vossel et al., 2016), and temporal lobe epilepsy (TLE) 

is generally recognized as the subtype of epilepsy that has the most overlap in its 

pathophysiology with AD (Scharfman, 2012). In addition to electrical abnormalities and 

cognitive impairment, AD and TLE share pathological features such as amyloid deposition 

(Mackenzie & Miller, 1994), tau pathology (Tai et al., 2016; Thom et al., 2011) and 

hippocampal sclerosis (Davidson et al., 2011). Additionally, several transgenic animal models 

of AD exhibit spontaneous seizures and have increased susceptibility to epilepsy (Chan, Jones, 
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Bush, O'Brien, & Kwan, 2015; Palop et al., 2007; Reyes-Marin & Nunez, 2017; Westmark, 

Westmark, Beard, Hildebrandt, & Malter, 2008; Ziyatdinova et al., 2011; Ziyatdinova et al., 

2016), suggesting the pathological hallmarks of AD may directly cause seizures.  

Diseases as dysfunctional states are associated with altered gene expression, which can be 

detected by transcriptional analysis of the mRNA in a given tissue. However, genes do not 

operate in isolation, but rather interact cooperatively within and across biological pathways. 

Thus, it is insufficient to identify one differentially expressed group of genes in order to 

thoroughly characterize a disease. A more comprehensive understanding of the associated 

pathology requires capturing changes in biological pathways and their interaction. Viewing 

disease as the result of an elaborate interplay of cellular pathways - much like a network -

accounts for the intricacy and complexity of human biology, as it assumes that perturbations in 

a single node of this network have the potential to affect the entire community or module it 

belongs to.  This systems or network approach is proving to be powerful in biomarker discovery 

(Clarke et al., 2013; Huan et al., 2015; Sun, Sun, He, & Xiong, 2017; Tran et al., 2011) due to 

its multiple advantages over the traditional linear association model approach, which fails to 

fully account for the complex web of interactions of gene products and key regulators.  

Weighted gene coexpression network analysis (WGCNA) is a widely used systems biology 

methodology that investigates the correlation between genes based on their expression level 

across all samples in the dataset (Zhang & Horvath, 2005). The genes (nodes) in the network 

are connected by an edge if the two genes have similar expression pattern i.e. their expressions 

rise and fall together (correlated) or when one rises the other falls (anticorrelated) (Zhang & 

Horvath, 2005). The WGCNA method has valuable advantages over knowledge-based 

networks such as protein-protein interaction (PPI) networks as it is not biased in favour of the 

known protein-protein interactions of the member nodes. The resultant network is constructed 

solely based on the pairwise expression correlation pattern of all genes. These networks are 

then hierarchically clustered into highly connected groups of genes called modules, and further 

examined through functional enrichment analysis. It has been shown previously that 

modularity is a conserved property of biological systems and modules of genes, proteins or 

metabolites have functional significance, i.e. the cellular functions are carried out by these 

highly connected modules of genes/proteins (Oldham et al., 2006; Oldham et al., 2008). These 

functional modules tend to be extremely heterogeneous, wherein the majority of the nodes have 

relatively few connections (edges) with other nodes, thus rendering them less relevant in the 
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overall function of the module, while a few “hub” nodes are highly connected and therefore 

are considered important regulators of the given module (Ravasz et al., 2002).  

Once a healthy state and a dysfunctional state are defined in a gene coexpression network graph, 

its architecture becomes a comparable and quantifiable attribute that is representative of the 

system. The topology of these networks can then be investigated and compared in order to 

identify important gene regulators and capture the differential connectivity and preservation of 

modules, which in turn reflect the overlap in biological pathways implicated in the conditions 

the networks are associated with.  

Recently, it has been proposed that disease phenotypes that were previously thought of as 

distinct entities may share common pathological mechanisms and have strong molecular 

relationships (Barabasi, Gulbahce, & Loscalzo, 2011). Given the correlated incidence and 

shared clinical symptoms between TLE and AD, we hypothesized that the common 

pathological features might be a result of a strong molecular relationship between the two 

diseases in the form of a shared set of perturbed cellular pathways and dysregulated gene 

modules. Since the electrophysiological and morphological symptoms common to TLE and 

AD impact the hippocampus in the setting of both diseases, we set out to compare the 

transcriptome of hippocampal tissue affected by TLE and AD. To achieve this, we employed 

the framework of WGCNA (Zhang & Horvath, 2005) to construct signature gene networks 

representing TLE and AD, and then employed network preservation statistics methods 

(Langfelder et al., 2011) to compare and contrast the signature gene networks by measuring 

the preservation of TLE modules in the AD coexpression network. Additionally, since 

functional gene modules have been shown to be preserved even across different species (Miller, 

Horvath, & Geschwind, 2010; Oldham et al., 2006), we also examined the preservation of TLE 

modules in a non-demented control (NDC) network to facilitate distinction of homeostatic 

(common to all networks) and pathology-specific (characteristic to disease state) features.  

4.2. Materials and Methods 
4.2.1. Data pre-processing, normalization and covariate adjustment 
In an effort to increase the sample size while reducing the loss of data due to variability of 

probe sets in different microarray platforms, we selected and compiled three microarray 

datasets with a total of 50 samples from late onset AD hippocampal tissue (GSE28146, 

GSE5281, GSE48350) (Berchtold et al., 2013; Blalock, Buechel, Popovic, Geddes, & 
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Landfield, 2011; Liang et al., 2008) and three microarray datasets with a total of 87 

hippocampal samples (GSE110298, GSE5281, GSE48350) (Berchtold et al., 2013; Berchtold 

et al., 2019; Liang et al., 2008) from non-demented individuals for the control (NDC) 

coexpression network (Table 4.1). These were the datasets that were generated using the same 

microarray platform with largest total sample size from all available sets. For the TLE gene 

coexpression network, we acquired a publicly available microarray dataset of 129 samples from 

hippocampus of patients who had been diagnosed with TLE and had undergone epilepsy 

resective surgery (GSE63808) (M. R. Johnson et al., 2015).  The datasets used in this study are 

listed in Table 4.1. All expression sets were acquired from NCBI Gene Expression Omnibus 

via GEOquery R package (version 2.52.0) and the probe annotations were mapped to Entrez 

IDs (Davis & Meltzer, 2007).  

Accession # Condition Brain region Samples Publication 

GSE63808 TLE hippocampus 129 Johnson et al, 2015 

GSE5281 AD hippocampus 10 Liang et al, 2007 

GSE28146 AD hippocampus 22 Blalock et al, 2011 

GSE48350 AD hippocampus 19 Berchtold et al, 2013 

GSE5281 NDC hippocampus 13 Liang et al, 2007 

GSE48350 NDC hippocampus 43 Berchtold et al, 2013 

GSE110298 NDC hippocampus 34 Berchtold et al, 2019 

Table 4.1. List of datasets used for the Chapter 4 analyses. All raw microarray datasets were downloaded from 
NCBI Gene Expression Omnibus using the GEOquery R package. 

Initial data visualization was facilitated by NetworkAnalyst web tool (G. Zhou et al., 2019). In 

the instances where multiple probes were mapped to the same gene, the average of multiple 

probe intensities was used to perform gene-level summarization. The expression sets were then 

filtered for low abundancy genes (the 5th percentile of all annotated genes with lowest relative 

abundance), log2 transformed and VSN normalized. The ComBat algorithm within SVA R 

package (version 3.32.1) was employed for batch effect correction, followed by Principal 

component analysis for visualization (Figure 4.1a,b)  (Leek, Johnson, Parker, Jaffe, & Storey, 

2012). An Empirical Bayes-moderated linear regression function (empiricalBayesLM) within 

WGCNA R package (version 1.67) was used for covariate (age and sex) adjustment 

(Langfelder & Horvath, 2008). The resultant filtered, normalized and covariate-adjusted 
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matrices with a total of 17821 matched probes/genes were used to generate coexpression 

networks for the three conditions. 

Figure 4.1. Quality control for covariates and batch effects. (a-b) Principal component analysis of 
expression distribution of all datasets a) before batch effect adjustment and b) after batch effect 
adjustment with ComBat algorithm. (c-d) Heatmap detailing the relationship between the datasets (x 
axis) and all detected modules (y axis) and in the c) AD and d) NDC networks. Each block in the 
heatmap shows the direction (red: positive, blue: negative), strength (Pearson correlation coefficient, 
top number) and FDR-adjusted significance (in brackets) of the Pearson correlation of the given module 
to each dataset that was used to generate the network.  
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4.2.2. Weighted gene coexpression network analysis (WGCNA)  
Three weighted gene coexpression networks were constructed, one for each condition: TLE, 

AD and NDC. First, a sample dendrogram was created for each condition via hierarchical 

clustering of all samples in order to identify and remove outliers (Figure 4.2a).  A correlation 

matrix was constructed based on pair-wise Pearson correlation coefficients of the expression 

level of all genes across all samples in the set, reflecting the coexpression similarity measure 

between all pairs of genes. A series of soft thresholding powers were then used to determine 

the optimal power at which the correlation matrices fit the scale-free topology model, i.e. when 

the characteristics of the network become independent of its size (Figure 4.2b,c). The 

correlation matrix reached a 90% fit to scale-free topology at ß=5 for AD and NDC datasets, 

and ß=7 for TLE dataset (Figure 4.2b,c).  An adjacency matrix was then built for each condition 

by raising the correlation coefficients to the determined soft power of ß=5 for AD and NDC, 

and ß=7 for TLE. A correlation network representing each condition was constructed based on 

the respective adjacency matrix, where each node corresponds to a single gene, and the edges 

are determined by the adjacency value between each pair of nodes, reflecting the connection 

strength and distance between them.  All three networks were constructed as “signed” and 

clustered into modules of coexpressed genes through average linkage hierarchical clustering 

via “dynamic tree cut” algorithm (Langfelder, Zhang, & Horvath, 2008). Given that the AD 

and NDC coexpression networks were generated by combining data from multiple studies, in 

order to capture any dataset-specific effects on the generation of specific modules, the Pearson 

correlation was calculated between each dataset and module in the given coexpression network 

(Figure 4.1c,d). The minimum module size was set to 30 genes. The modules were then 

functionally annotated through pathway enrichment analysis. Central hubs were determined 

for each module by identifying the top 10 member genes with highest intramodular 

connectivity and significant correlation to module eigengene – the first principal component of 

the expression matrix of the corresponding module.  
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Figure 4.2. Scale-free topology model. a) clustering of AD samples and detection of outlier. b) 
relationship between soft threshold value ß (x-axis) and the b) average network connectivity and c) 
scale-free topology fit (y-axis). An R^2 value of 0.9 or 90% at ß=5 indicates that when raised to the 
power of ß=5, the network conforms to scale-free topology, i.e. the network connectivity becomes 
independent of its size. 

4.2.3. Module preservation analysis 
In order to understand the extent of preservation of TLE modules in the AD and NDC networks, 

we used two approaches. The first approach was cross-tabulation, which is a simpler method 

that creates a contingency table reporting the number of overlapping genes from each TLE 

module with each of the AD or NDC module. The significance of the overlap is calculated 

through Fisher’s exact test. The second, more complex approach utilizes network separability, 

density and connectivity-based preservation statistics available within the modulePreservation 

function in the WGCNA R package (version 1.67) introduced by Langfelder et al and described 

in detail in (Langfelder et al., 2011) and (Oldham et al., 2006). This method requires adjacency 
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matrices of both reference (TLE) and test networks (AD and NDC) as input, however module 

assignment is only necessary for the reference-TLE network (Langfelder et al., 2011).  The 

observed preservation value for each module detected in the TLE network was calculated in 

the AD and NDC networks. We then employed a permutation test (number of 

permutations=500) which randomly permutes the module assignment in the AD and NDC 

networks to assess if the observed value of preservation statistic is higher than what is expected 

by chance and assigns a permutation test p-value. The observed preservation values were then 

standardized with regard to the mean and variance and a significance Z score was defined for 

each preservation statistic. The overall significance of the observed statistics was assessed by 

combining multiple preservation Z statistics into a single overall measure of preservation 

defined as Zsummary. Thus, each module identified in the TLE network has a pair of Zsummary 

scores which describe the preservation of the given module in the AD (𝒁𝒔𝒖𝒎𝒎𝒂𝒓𝒚𝑨𝑫 )	and NDC 

(𝒁𝒔𝒖𝒎𝒎𝒂𝒓𝒚𝑵𝑫𝑪 )	networks, respectively. Modules with Zsummary>10 are considered well-preserved 

(Langfelder et al., 2011), thus the higher the Zsummary score, the stronger the evidence of 

preservation of the given TLE module in the two test networks. In order to compare the degree 

of preservation of each TLE module between the AD and NDC networks, we introduce a 

surrogate quantifier of “differential module preservation” – ΔZsummary, which is the arithmetic 

difference between the two preservation scores: 

∆𝒁𝒔𝒖𝒎𝒎𝒂𝒓𝒚 = 𝒁𝒔𝒖𝒎𝒎𝒂𝒓𝒚𝑨𝑫 − 𝒁𝒔𝒖𝒎𝒎𝒂𝒓𝒚𝑵𝑫𝑪  

thus, the modules with a positive ΔZsummary value are more preserved (show Gain Of 

Preservation, GOP) and the modules with a negative ΔZsummary value are less preserved (show 

Loss Of Preservation, LOP) in the AD network compared to the control-NDC network.  

4.2.4. Functional annotation and enrichment analysis 
In order to determine the functional significance of the detected modules, a pathway 

enrichment analysis of the genes constituting each module was performed using the g:Profiler 

web tool (Reimand et al., 2016). Since the Gene Ontology database has a hierarchical order, in 

the instances of a large number (hundreds) of enriched pathways, we clustered the GO terms 

lower in hierarchy into their representative “parent” terms higher in the hierarchy using a 

similarity threshold of 90% (Supek et al., 2011). 
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4.3. Results 
4.3.1. Temporal lobe epilepsy (TLE) coexpression network 
After filtering, probe annotation and removal of outliers, a total of 127 samples were included 

in the TLE coexpression network. Hierarchical clustering identified 18 modules of highly 

coexpressed genes, ranging from 27 to 999 nodes in size. The modules were annotated based 

on the functional enrichment analysis of member genes, with the most enriched pathways in 

the top hierarchy levels being used as functional labels. Functional annotation of member genes 

from all modules rendered significantly enriched Gene Ontology terms and KEGG pathways, 

ranging from a few dozen to several hundreds (Figure 4.3.a). Interestingly, the largest module 

(Turquoise, 999 nodes) which is enriched for genes involved in synaptic signalling and 

neurotransmission processes in the GO biological process category, also identified “Pathways 

of neurodegeneration” and “Alzheimer Disease” among top significantly enriched KEGG 

pathways (FDR=1.04x10-8, FDR=6.15x10-7). This finding suggests that in TLE, the genes 

responsible for neurotransmission and signal transduction behave in a manner characteristic to 

Alzheimer’s Disease pathology. A smaller module (Tan, 84 nodes) which is enriched for 

neurogenesis and GABAergic signalling pathways was identified as enriched for 35 terms from 

the human phenotype ontology database, all indicating seizure or epilepsy-related ontologies. 

4.3.2. Alzheimer’s Disease coexpression network 
After filtering and removal of outliers, a total of 49 samples were included in the AD 

coexpression network. WGCNA identified 10 modules of highly coexpressed genes, ranging 

from 32 to 708 nodes in size (Figure 4.3.b). The largest module (also labelled as Turquoise) is 

enriched for neurotransmission and synaptic signalling-related processes such as “chemical 

synaptic transmission” (FDR=1.1x10-34), “voltage gated channel activity” (FDR=4.25x10-8), 

“ion transmembrane transport” (FDR=1.02x10-21) and “neurotransmitter transport” 

(FDR=2.18x10-14). No significant correlation (Padj<0.05) between specific datasets and 

modules were detected in either AD nor NDC networks (Figure 4.1c,d).  

4.3.3. Non-demented control coexpression network 
After filtering and removal of outliers, a total of 84 samples were included in the NDC network.  

WGCNA identified 11 modules of highly coexpressed genes which were substantially larger 

in size (ranging from 160 to 2836 nodes) than those identified in TLE and AD networks. The 

two largest modules (Blue and Turquoise) were enriched for processes involved in gene 

expression and metabolism, respectively. Three smaller modules (Yellow, Black, Greenyellow) 

were enriched in synaptic signalling processes and voltage gated channel activity (Figure 4.3.c).  
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Figure 4.3. Hierarchical cluster dendrogram of a) TLE b) AD and c) NDC gene coexpression 
networks. Each black branch (vertical line) corresponds to one gene. The colour rows below the 
dendrogram indicate module membership. The modules are functionally annotated and named based on 
the enriched GO/KEGG pathways of the member genes. The grey module contains genes that have no 
specific module assignment i.e. the expression pattern of these genes does not show sufficient variability. 
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4.3.4. TLE modules are preserved to various degrees in AD and NDC networks 
In order to capture any similarities within the module composition and network architecture of 

the two pathological gene networks, while allowing for discrimination between unperturbed 

(homeostatic) and perturbed (dysregulated) modules, two pairs of comparisons were made: 

[TLE vs AD] and [TLE vs NDC]. Several large modules showed significant overlap in member 

genes between both pairs of networks as measured by cross-tabulation of every module from 

TLE network with those from AD (Figure 4.4.a) and NDC (Figure 4.4.b) networks. The most 

significant (P≈0) overlap was observed between the two Turquoise modules in the TLE and 

AD networks, both of which are enriched for synaptic signalling pathways (Figure 4.5.a). The 

density and connectivity-based preservation scores as calculated by the modulePreservation 

function are shown in Figure 4.5.a for each of the TLE modules. The arithmetic difference 

between the two preservation scores designated as ΔZsummary was used to define modules which 

show Gain Of Preservation (GoP) or Loss Of Preservation (LoP) in the AD network when 

compared to the NDC network (Figure 4.5.b). In the following sections, we characterise the 

overlap and preservation of TLE modules in AD and NDC networks based on the biological 

pathways they represent. 

Figure 4.4. Cross-tabulation of TLE modules (in Y axis) against a) AD and b) NDC modules (in 
X axis). Each axis is labelled by the corresponding module colour. Each block in the table shows the 
number of overlapping genes in the intersection of corresponding a) TLE and AD and b) TLE and NDC 
modules. The table is colour-coded with -log10 of the P value associated with the Fisher exact test.  

4.3.5. Synaptic signalling 
The largest GOP (by ~60%, ΔZsummary=40.7) was observed in the Turquoise module, which 

functionally annotates to synaptic signalling processes. With a Zsummary of 109.5, this module is 

extremely well preserved between TLE and AD coexpression networks (Figure 4.5.a). The 

corresponding preservation score for this module between TLE and NDC coexpression 
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networks is Zsummary = 68.8. With voltage-gated sodium channel 3 subunit B (SCN3B) as a hub 

gene, this module is enriched for voltage-gated ion channel activity, synaptic signalling and 

neurotransmission pathways. There is significant (p=2x10-310) overlap between the genes 

constituting the TLE Turquoise module with the corresponding neurotransmission-associated 

module in the AD network (also labelled Turquoise, Figure 3a). In the NDC network, the TLE 

Turquoise module appears to split into three distinct modules (Figure 4.4.b), two of which 

(Black and Yellow) functionally annotate to synaptic signalling pathways, while the third, 

Green module is enriched for mitochondrial-based processes (Figure 4.3.c). These results 

suggest homologous restructuring and perhaps perturbation of synaptic signalling pathways in 

TLE and AD-affected hippocampus compared to NDC. The WGCNA clustering algorithm 

identified another smaller module (Tan) in the TLE coexpression network, which functionally 

annotates to synaptic signalling and neurogenesis-related pathways. The Tan module shows 

GoP (ΔZsummary =10.2) and contains a GABA receptor subunit (GABRB3) and an alpha subunit 

of VGSC (SCN2A) as its top regulatory hub genes. Although this module is enriched for GO 

terms that are similar to Turquoise module, according to the gene correlation dendrogram 

(Figure 4.3.a), these modules branch off from each other at a high hierarchy level, and are 

therefore two distinct, independent modules. There is similar overlap of genes between the 

TLE Tan module with corresponding neurotransmission-associated modules in both AD and 

NDC networks (Figure 4.4. a,b). 

Figure 4.5. Comparison of density and connectivity-based preservation of TLE modules in AD and NDC 
networks. a) The overall significance of the observed preservation statistics was assessed for each TLE module 
(Y axis) by combining density and connectivity-based preservation Z statistics into a single overall measure of 
preservation defined as Zsummary shown in pairs on X axis for NDC (blue bars) and AD (orange bars) networks. b) 
The arithmetic difference of preservation Zsummary values, ΔZsummary  in X axis between NDC and AD networks for 
each of the TLE modules in Y axis. Positive ΔZsummary indicates gain of preservation (GOP, more preserved) axnd 
negative ΔZsummary indicates loss of preservation (LOP, less preserved) of the given TLE module in the AD 
network compared to NDC network.   
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4.3.6. Metabolism 
There are two distinct TLE modules (Blue and Yellow) with member genes that are enriched 

for metabolic processes (Figure 4.3.a), both of which show GoP (ΔZsummary =10.2 for Blue and 

ΔZsummary =4.8 for Yellow, Figure 4.5.b). The larger, Blue module has 989 member genes, with 

thyroid hormone receptor interactor 6 (TRIP6) as its top regulatory hub gene and functionally 

annotates to metabolic, cellular organization, transport, and other homeostatic processes. The 

smaller, Yellow module functionally annotates to more specific mitochondrial functions such 

as “oxidative phosphorylation”, “ATP synthesis coupled proton transport” and “oxidoreductase 

activity” as well as multiple mitochondrion organization pathways. The hub gene for this 

module is Acid phosphatase 1 (ACP1), the main function of which is hydrolysis of tyrosine 

and its phosphates. When cross referencing the KEGG database, the genes comprising the 

Yellow module rendered “Alzheimer’s Disease” as one of the most enriched KEGG pathways 

(Padj=8.54x10-6).  

Another small metabolic TLE module (Lightcyan) with 53 member genes shows LOP 

(ΔZsummary = -4.0, Figure 4.5.b) between AD and NDC networks. The Lightcyan module is 

highly enriched for mitochondrial-based processes and has YWHAG as a central hub gene. 

YWHAG codes for the Tyrosine 3-Monooxygenase activation protein Gamma, also known as 

Protein Phosphatase 1, regulatory subunit 170, which belongs to a family of proteins that 

mediate signal transduction and are involved in many vital cellular processes such as 

metabolism, apoptosis and cell cycle regulation. The top enriched pathways of this module 

include “TCA cycle and respiratory electron transport”, “mitochondrial ATP synthesis coupled 

electron transport”, “ATP metabolic process” and other oxidative phosphorylation-related 

pathways.  

4.3.7. Myelination 
Another module of interest showing substantial LoP is the Red module, with 206 member genes 

and ΔZsummary of -31.9 (Figure 4.5.b). This module is enriched for genes involved in 

myelination and axon ensheathment pathways, and as a central hub gene has NK6 homeobox 

2 (NKX6-2), which is a transcription factor involved in axon-glial interactions at nodes of 

Ranvier. The Red module shows significant overlap of member genes with the corresponding 

myelination-associated module in the AD coexpression network (labelled Blue, Figure 4.4.a) 

and a large, metabolic module (labelled Turquoise, Figure 4.4.b) in the NDC coexpression 

network. 
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4.3.8. Immune system 
The final TLE module of interest showing LoP (ΔZsummary = -13.3) is the immune system-

associated Purple module, with 107 member genes and transmembrane immune signalling 

adaptor (TYROBP) as a central regulatory hub gene. This module is enriched for immune 

system processes such as leukocyte activation, cytokine production and signalling, antigen 

processing and presentation, interferon signalling and other inflammatory pathways. With 97 

out of 107 genes in common, there is significant overlap (p=2.1x10-97) between the genes 

constituting the Purple module in the TLE network and the Brown immune system-associated 

module in the NDC network (Figure 4.3.c, 4.4.b). The same 97 genes from TLE Purple module 

overlap with the unassigned (Grey) module in the AD network (Figure 4.4.a), indicating that 

immune signalling involving these genes may be dysregulated in AD.   

4.4. Discussion 
The aim of this study was to characterize the shared molecular signature of AD and TLE and 

identify commonly dysregulated pathology-specific gene modules which could explain the 

correlated incidence of the two diseases. Given that the electrophysiological and morphological 

symptoms common to TLE and AD severely impact the hippocampus, we selected publicly 

available transcriptomic datasets from hippocampal tissue of relevant pathological and control 

states. In order to generate a reliable and robust gene coexpression signature of a disease, it is 

imperative to have datasets with a large number of samples. At the time of our analysis, there 

was no single publicly available transcriptomic dataset profiling the hippocampus of AD 

patients that had more than 25 samples for each group, therefore, we employed a common 

strategy to increase statistical power by combining several datasets together using a statistical 

methodology while accounting for batch effects and covariates (detailed in Methods).  

According to our findings, AD and TLE show similar rewiring of synaptic transmission and 

metabolism-related gene networks. Perturbed synaptic transmission is not surprising, 

considering that circuit dysfunction and hyperexcitability are common features of both 

pathologies. The SCN3B gene which codes for a beta subunit of voltage gated sodium channel 

NaV1.1 was identified as the main regulatory hub gene of the synaptic transmission-associated 

Turquoise module identified in the TLE network, which shows the highest preservation score 

and largest GOP in AD coexpression network. As the most connected node of the Turquoise 

module, SCN3B is an interesting regulatory hub candidate. The beta subunits of voltage gated 

(VG) ion channels carry a multitude of essential functions. In addition to being VG channel 
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modulators, the beta subunits also function as cell adhesion molecules and regulators for 

voltage-gated sodium channel (VGSC) alpha subunit gene expression, due to being substrates 

for sequential cleavage by beta secretase (BACE1) (Wong et al., 2005). The expression of 

BACE1 is reportedly increased in AD pathology, resulting in abnormal VGSC beta subunit 

cleavage, which has been shown to result in reduced levels of functional NaV1.1 channels on 

the surface of GABAergic interneurons, leading to network disinhibition and higher 

susceptibility to seizures in mouse models of AD (B. F. Corbett et al., 2013; D. Y. Kim et al., 

2007; D. Y. Kim et al., 2011).  

Mutations in the genes that code for both alpha and beta subunits of VGSC are implicated in 

various neuropathologies (O'Malley & Isom, 2015). Pathological levels (both increase and 

decrease) of SCN3B mRNA have been implicated in multiple neurodegenerative diseases such 

as amyotrophic lateral sclerosis and Alzheimer’s disease as well as cancer (Adachi et al., 2004; 

Dunckley et al., 2006; Nutini et al., 2011). Another central hub gene of this module, Ephrin 

type A receptor 4 (EPHA4), belongs to the protein-tyrosine kinase family and has been 

implicated in various synaptic dysfunction-related pathologies, including AD and TLE (A. K. 

Fu et al., 2014; Shu et al., 2016). Under homeostatic conditions, the EphA4 acts as a negative 

regulator of neurotransmission and synaptic plasticity in the hippocampus (Murai & Pasquale, 

2011). It has been shown to become deregulated and overactivated, resulting in synaptic failure, 

in mouse models of AD (A. K. Fu et al., 2014) and TLE (Shu et al., 2016) pathology. In these 

models, blockade/knockdown of the receptor rescues the synaptic impairment. It is therefore 

conceivable that deregulation and downstream signalling of EphA4 is one of the shared 

pathological mechanisms between AD and TLE, which leads to abnormal neurogenesis and 

impairments in synaptic signalling.  

The second notable module of interest is the neurogenesis-associated Tan module. Despite the 

small size of this module, the expression pattern of its 84 member genes is closely correlated 

in TLE and AD networks, resulting in formation of an independent module that is highly 

preserved and shows substantial GOP in the AD network compared to NDC. The Tan module 

also appears to be a seizure-associated module. Central hub genes among the top 10 most 

connected nodes centrally located in this module include GABRB3 (gamma-aminobutyric acid 

type A receptor subunit beta3), SCN2A (sodium voltage-gated channel alpha subunit 2), 

PRICKLE1 (Prickle planar cell polarity protein 1) and FRMPD4 (FERM and PDZ domain 

containing 4). These genes have been shown to be associated with various types of seizures 



 

 

 88 

and EEG abnormalities (M. A. Corbett et al., 2010; Euro, Epilepsy Phenome/Genome, & Epi, 

2014; Polan et al., 2014). Notably, all 35 significantly enriched (Padj<0.05) phenotypes 

associated with the Tan module from human phenotype ontology database implicate EEG 

abnormalities and epileptiform activity. These phenotypes have been observed in patients with 

AD and various epilepsy disorders (K. A. Vossel et al., 2012; K. A. Vossel et al., 2013; K. A. 

Vossel et al., 2016) and reported in animal models of AD (Bezzina et al., 2015; Drinkenburg 

et al., 2017; Kam, Duffy, Moretto, LaFrancois, & Scharfman, 2016; Ziyatdinova et al., 2011; 

Ziyatdinova et al., 2016). Epileptiform activity is one of the major clinical features shared 

between AD and TLE, and is thought to contribute to more rapid disease progression and 

cognitive decline (Volicer et al., 1995; K. A. Vossel et al., 2013; K. A. Vossel et al., 2016), 

therefore, further investigation of this distinct disease module has the potential of facilitating 

more targeted treatment options.  

The second largest difference in TLE module preservation scores was observed for the Red 

module (ΔZsummary = -31.9), which annotates to myelination and axon ensheathment processes. 

While a Zsummary score of 41.8 is still indicative of very strong preservation (Langfelder et al., 

2011) in the AD network, the large difference in the preservation score of the corresponding 

module in the NDC network (Zsummary=73.7) suggests that the operation of myelination and 

axon ensheathment processes is at least partially altered in the setting of AD compared to TLE 

and NDC. Indeed, it has been reported before that myelination-associated gene modules are 

severely perturbed in the prefrontal cortex of AD (B. Zhang et al., 2013). Impairment in 

cholesterol metabolism which is detected in AD brain (Martins et al., 2009; Sodero et al., 2012) 

could lead to alterations in the myelination processes, since 25% of the total cholesterol in the 

human body is allocated to the brain, where it is mostly localized to the plasma membranes of 

neurons and glia, and myelin sheaths covering the axons (Bjorkhem & Meaney, 2004). This 

may explain why the myelination module from TLE coexpression network is less preserved in 

the AD network compared to NDC. 

Given the evidence of strong neuroinflammatory presence in both AD and TLE pathologies 

(Akiyama et al., 2000; Glass, Saijo, Winner, Marchetto, & Gage, 2010; Maroso et al., 2011; 

Maroso et al., 2010; Vezzani, French, Bartfai, & Baram, 2011), it is somewhat surprising that 

the Purple immune system-associated module is substantially less preserved between TLE and 

AD, compared to TLE and NDC networks. The central regulatory hub gene of the Purple 

module is TYROBP, which has been previously identified as a causal regulatory hub within a 
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microglia-associated module generated from prefrontal cortex samples from late onset AD 

patients (B. Zhang et al., 2013). Several studies investigating gene regulatory networks of AD 

showed disruption of normal microglial gene modules (Efthymiou & Goate, 2017; Mukherjee 

et al., 2019; B. Zhang et al., 2013). We therefore speculate that in the AD-affected hippocampus, 

there is rewiring of microglial gene networks that is distinct from TLE and NDC.  

When considering the periodic increase in neuronal energy demand to sustain seizures, it is not 

surprising that metabolic pathways are among the primary characteristics of the molecular 

signature of TLE. A relatively new but growing hypothesis is that neurodegenerative disorders, 

including late onset AD and several types of acquired epilepsy arise from metabolic 

dysfunction and are aggravated by oxidative stress and mitochondrial dysfunction (Lin & Beal, 

2006; Mattson, 2004). Indeed, the majority of genes and proteins associated with the term 

“Alzheimer’s Disease” in various biological pathway databases belong to metabolic pathways 

(Harris et al., 2004; Joshi-Tope et al., 2005; Ogata et al., 1999; Thomas et al., 2003). A large 

number of these pathways were significantly enriched (FDR<0.05) in both metabolic modules 

(Blue and Yellow) of the TLE network and the Yellow metabolic module in the AD network. 

This suggests that perturbations in redox balance, oxidative phosphorylation and other 

mitochondrial processes are important players in epileptogenesis and should be studied further.  

The results of our analysis suggest that in addition to clinical and morphological features, 

Alzheimer’s Disease and temporal lobe epilepsy share specific defects in the molecular 

mechanisms that regulate excitability, synaptic signalling, neurogenesis and mitochondrial 

pathways. Perturbed metabolism and mitochondrial dysfunction may contribute to impairment 

in neurotransmission and consequently lead to the electrophysiological abnormalities and 

cognitive symptoms seen in both AD and epilepsy disorders. As the pathology progresses, 

accumulation of reactive oxygen species could increase epilepsy sensitivity and result in 

seizure development. On the other hand, epileptic activity may aggravate the cognitive decline 

and neurodegeneration in AD, thus putting the patients in a vicious cycle of debilitating 

symptoms and fast progression of disease. In the absence of a clear causal mechanism such as 

traumatic brain injury or genetic mutation, it is challenging to determine which factor is the 

metaphorical ‘chicken’ and which is the ‘egg’ due to the enormous variation in immune and 

metabolic profiles, vast variety of lifestyles, environmental circumstances and combinations of 

life events. As shown here, a systems level network-based approach wherein gene modules 

represent emergent global properties of biological function, provides a useful tool for 
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hypothesis generation, which then would be subject to experimental validation. We 

demonstrate that gene coexpression network analysis and network preservation statistics 

methods can be used for a holistic, hypothesis-free, systems-level examination and comparison 

of two pathological states, solely based on the gene coexpression network architecture of each 

state. Additionally, we present a list of central hub genes that have the potential of influencing 

the larger molecular network they regulate. The identification of pathology-related modules 

which are associated with the clinical features and phenotypes observed in the context of both 

diseases and the implication of these modules in the published epilepsy and dementia literature 

highlights the validity of our approach. However, further experimental evidence and 

pharmacological targeting of the identified regulatory hub genes and implicated cellular 

pathways is necessary for experimental validation.  
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CHAPTER 5 
 
INVESTIGATING THE MOLECULAR AND CELLULAR 
MECHANISMS OF SYNERGY BETWEEN AMYLOID PATHOLOGY 
AND RECURRENT SEIZURES  
5.1. Introduction  
Epileptiform activity is more prevalent in AD patients than in the general population. In light 

of evidence from the familial AD mutation pedigrees and newly emerged epidemiological 

studies on clinical evidence, the epileptiform activity is likely underdetected and 

underdiagnosed in the AD patient cohort. Further, the presence of epileptiform activity predicts 

faster cognitive decline in AD, and it could promote disease progression through multiple 

mechanisms.   

In previous chapters, we identified molecular mechanisms shared between AD and 

epileptiform disorders, leading to the proposal of a two-factor disease model for epilepsy and 

dementia. In this paradigm, the synergistic interaction between the two patho-mechanisms 

defines a distinct subpopulation of “dual-pathology” patients, characterized by faster disease 

progression and differing treatment outcomes. A number of recent studies have provided 

convincing evidence that co-occurrence of seizures and AD pathology is associated with more 

severe cognitive and biochemical disease profile (K. A. Vossel et al., 2016; K. A. Vossel et al., 

2017). This suggests that, for the subgroup of epilepsy-prone AD patients, the accelerated 

cognitive deterioration is the inevitable consequence of disease progression and is likely 

precipitated by the synergistic interaction between AD pathology and recurrent seizures 

(Banote et al., 2022). The final experimental chapter of this thesis aims to characterize the 

molecular signature of a brain that simultaneously harbours amyloid pathology and recurrent 

seizures (referred to as “double pathology” throughout this chapter), in an attempt to identify 

the molecular mediators of synergy between amyloid pathology, recurrent seizures and 

cognitive decline. We utilized the 5xFAD transgenic mice coupled with the electrical amygdala 

kindling model of epileptogenesis to first demonstrate the already-present chronic circuit 

hyperexcitability in 5xFAD mice, while at the same time establishing recurrent seizure 

phenotype to better recapitulate the dual-pathology phenotype seen in human condition. In this 

experimental paradigm the amygdala-kindled 5xFAD mice represent the subpopulation of AD 

patients who developed recurrent seizures and are at risk of accelerated cognitive deterioration. 
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We then evaluated the effect of recurrent seizures on hallmark features of AD pathology – 

amyloid plaque load and cognitive behavioural performance. RNA sequencing and 

bioinformatic analysis of hippocampal tissue was conducted in order to investigate the 

molecular mechanisms of synergy between recurrent seizures and AD pathology as well as to 

identify key mediators of accelerated disease progression. 

5.2. Materials and methods 
5.2.1. Animals  
All live animal procedures were approved by the Alfred Research Alliance Animal ethics 

committee (ethics number: E/1869/2018/M) and adhered to the Australian code for the care 

and use of animals for scientific purposes. All experiments were conducted by the researcher 

blinded to the genotype of mice.  

Twenty-two-week-old female 5xFAD mice (N=20) and WT control littermates (N=22) were 

randomly assigned to experimental (kindled) and control (sham) groups (N=10-12 per group, 

∑𝑁 = 42). All animals were housed under identical conditions, in temperature-controlled 

rooms with 12:12 hr dark-light cycle with ad libitum access to food and water.  

5.2.2. Electrode implantation surgery and amygdala kindling procedure 
The mice were placed under general anaesthesia and a stereotaxic surgery was performed under 

aseptic technique. An intradural stimulating bipolar electrode was implanted into the left 

amygdala (M/L: -3.1, A/P: -0.8, D/V: -4.2, relative to bregma).  Epidural stainless steel screw 

electrodes were implanted on each side of frontal (active recording) and parietal (ground and 

reference) bones. All electrodes were secured to the skull with dental cement. Buprenorphine 

(0.05 mg/kg) and Carprofen (5mg/kg) were used as analgesic. The mice were single housed 

and allowed to recover for 7 days after the day of surgery, after which the kindling protocol 

commenced. On the 8th day post-surgery the after-discharge threshold was determined for each 

mouse by electrically stimulating the bipolar electrode with a burst of 1 msec biphasic square 

wave pulses at 60Hz frequency, starting at I=0.04 mA and incrementally increasing the current 

intensity (up to a maximum of 0.60 mA) until an electrographic seizure of >5 sec duration was 

observed. For all subsequent days, the mice were stimulated once a day at their individual ADT 

current intensity until each mouse experienced a total of 15 seizures. LabChart 7 software 

(ADInstruments) was used for controlling the stimulation and visualising the EEG data. The 

duration of each electrographic seizure was determined from the corresponding EEG trace. The 

severity of seizures was scored according to the Racine scale by two independent investigators 
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blinded to the genotype of mice. The animals in the sham groups were plugged to a mock EEG 

cable and handled in a similar manner as the kindled group, with the exception of delivering 

the electrical stimulation.  

5.2.3. Y maze test 
At least 48 hours after the last evoked seizure the mice underwent a Y maze test to assess the 

hippocampal-dependent spatial recognition and memory as previously described (Dellu, Mayo, 

Cherkaoui, Le Moal, & Simon, 1992). The maze consists of three equilaterally intersecting 

arms in the shape of “Y”, with unique spatial cues positioned at the end of each arm. The test 

was conducted in two phases: during the first phase the mouse was placed in the “home” arm 

and allowed to freely explore only one (“familiar”) of the remaining two arms for 15 minutes, 

while the third (“novel”) arm was blocked from access. The mouse was then returned to its 

home cage for a 30 minute interval, and subsequently reintroduced to the Y-maze with free 

access to explore all three arms. Entries into the novel and familiar arms, total distance travelled, 

and time spent in each arm were quantified using a tracking software (TopScan Lite).  

5.2.4. Tissue collection and histology 
7 days after the last kindling stimulation the mice were injected with a lethal dose of 

pentobarbital (lethabarb) followed by transcardiac perfusion with ice-cold phosphate buffered 

saline (PBS). The whole brain was removed and divided into two hemispheres. The 

hippocampus was rapidly dissected from the left hemisphere and immediately flash-frozen in 

liquid nitrogen and stored at -80C until RNA extraction. The right hemisphere was immersion-

fixed in 4% paraformaldehyde, dehydrated, embedded in OCT medium and frozen for 

immunohistochemical analysis.  

5.2.5. Immunohistochemistry and microscopy 
The PFA-fixed, OCT-embedded mouse brains were serially cryosectioned at 30µm thickness 

for immunohistochemistry. Table 1 includes all antibodies and dyes used for IHC, as well as 

the corresponding concentrations and further details. In order to objectively quantify the plaque 

load across the entire hippocampal formation, for each mouse, 5-6 equidistant coronal sections 

(each ~100 µm apart) were stained with 1% thioflavin S solution. Briefly, a 1% (w/v, in PBS) 

Thioflavin S solution was prepared fresh on the same day and filtered with 0.2 µm syringe 

filter. The brain sections were washed twice with PBS followed by 15-minute incubation in 

1% Thio S solution, followed by consecutive 1-minute washes in 80% Ethanol and 70% 

Ethanol. The stained brain sections were then mounted on glass microscope slides and stored 
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away from light for 32 hours to allow for the mounting medium to dry. For high magnification 

visualization of amyloid plaques and surrounding ecosystem, as well as the morphology of 

plaque associated microglia and astrocytes, 3-dimentional Z-stack images were captured using 

either 40x or 60x oil immersion objectives on Nikon Ar1 confocal fluorescent microscope. 

Where indicated, orthogonal projections of Z-stacks were created, to facilitate visualization of 

cellular morphology and distribution. 

5.2.6. Amyloid plaque area quantification 
All ThioS-stained brain sections were imaged within 48 hours of staining, to prevent artefact 

variations in ThioS fluorescence due to oxidation. All images were captured on Nikon Ti-E 

widefield microscope using 20x magnification objective, with all settings and optical 

configuration kept identical. Using the Allen mouse brain atlas (mouse.brain-map.org, (Lein et 

al., 2007)), the hippocampal formation was precisely traced on an Apple iPad with Apple Pencil 

and using the same auto-threshold settings the total percentage of ThioS-immunoreactive area 

was measured for each brain section. We analysed 5-6 sections per animal, and the average % 

area ThioS / total area were compared between kindled 5xFAD and Sham 5xFAD groups.  

Target Reporter/antibody Concentration or 
dilution factor Catalog # 

Dense core plaques Thioflavin S 1% (w/v) S6825 

Amyloid β 1-42 Mouse anti Aß1-42 1:500 SIG-39142 

APP 1-16 Mouse anti 6E10 1:1000 SIG-39320 

Microglia Goat anti Iba1 1:800 AB5076 

Astrocytes Rabbit anti GFAP 1:1000 Z0334 

Vimentin Rat anti Vim 1:500 MAB2105 

Neuronal nuclei Mouse anti NeuN 1:500 MA5-33103 

All nuclei/chromatin DAPI 1:10000 D-1306 

 
Table 5.1. A list of primary antibodies and fluorescent dyes used for IHC labelling of brain tissue. 

5.2.7. RNA sequencing, and differential expression analysis 
The total RNA was extracted from the left hemisphere hippocampal tissue using Nucleo-spin 

RNA extraction kit (Maccerey-Nagel). A total of 42 RNA samples (4 experimental groups, 

n=10-12 each) were sent to BGI for library preparation and RNA sequencing, all of which 
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passed quality control. The transcriptome library was constructed and sequenced by BGI on 

DNBseq platform. After filtering and adapter trimming, ~20 million clean paired-end reads 

(150bp long) per sample were generated. An in-house pipeline featuring a STAR aligner 

(Tsyganov, Perry, Archer, & Powell, 2018) was used for mapping the raw reads to the mouse 

reference genome (GRCm38). The mapped reads were quantified via featureCounter, to 

produce a gene count matrix, which was then filtered for low abundance genes and TMM-

normalized with EdgeR. A quasi-likelihood negative binomial generalized log-linear model 

was fitted to the TMM-normalized gene count data to perform differential expression analysis 

between the four experimental groups. For all pairs of comparisons, the significance threshold 

was set to FDR<0.05, with absolute fold change at FC>2.0.  

5.2.8. Correlation network analysis by WGCNA 
First, a sample dendrogram was created via hierarchical clustering of all samples in order to 

identify the presence of any outliers. A correlation matrix was constructed based on pair-wise 

Pearson correlation coefficients of the expression level of all genes across all samples in the 

set, reflecting the coexpression similarity measure between all pairs of genes. A series of soft 

thresholding powers were then used to determine the optimal power at which the correlation 

matrices fit the scale-free topology model, i.e. when the characteristics of the network become 

independent of its size. The correlation matrix reached a 90% fit to scale-free topology at ß=5.  

An adjacency matrix was then built by raising the correlation coefficients to the determined 

soft power of ß=5. A correlation network was constructed based on the respective adjacency 

matrix, where each node corresponds to a single gene, and the edges are determined by the 

adjacency value between each pair of nodes, reflecting the connection strength and distance 

between them.  Networks were constructed as “signed” and clustered into modules of 

coexpressed genes through average linkage hierarchical clustering via “dynamic tree cut” 

algorithm (Langfelder et al., 2008). The minimum module size was set to 30 genes. Central 

hubs were determined for each module by identifying the top 6 member genes with highest 

intramodular connectivity and significant correlation to module eigengene – the first principal 

component of the expression matrix of the corresponding module. The correlation of modules 

to sample groups, behavioural data and amyloid plaque burden was assessed through Pearson 

correlation. The final networks were visualized in Cytoscape software version 3.6.9 (Shannon 

et al., 2003). In order to determine the functional significance and cell-type specific enrichment 

of detected modules, pathway enrichment analysis of the genes constituting each module was 
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performed using the EnrichR web suite (E. Y. Chen et al., 2013; Kuleshov et al., 2016; Xie et 

al., 2021).  

5.2.9. Statistical analysis 
Statistical significance was calculated using Prism 9 (GraphPad, La Jolla, CA, U.S.A.) and 

RStudio (2022.07.2).  The normality of behavioural and imaging data was assessed by the 

Shapiro-Wilk test. The severity of first seizure and the number of stimulations required to elicit 

the first bilaterally convulsive class V seizure were compared between 5xFAD and WT groups 

using Mann-Whiney U test. Average seizure duration and total area covered by amyloid was 

compared between 5xFAD and WT, and kindled 5xFAD vs sham 5xFAD groups, respectively, 

using unpaired Student’s t-test. The ratio of time spent in novel and familiar arms of Y-maze 

was compared between kindled and sham 5xFAD and WT groups via balanced ANOVA and 

Tukey’s HSD test. The significance threshold for each analysis was set at p<0.05. Data in 

boxplots is presented as mean +- standard error (SEM). Statistical analyses are presented in the 

figure legends. 

5.3. Results 
5.3.1. 5xFAD mice showed hyperexcitable phenotype and impaired spatial memory  
Electrographic afterdischarge was seen at comparable thresholds in all animals subjected to the 

kindling procedure, attesting the consistency of the implantation surgery procedure. The 

afterdischarge consisted of several seconds (>10 sec) of rhythmic spikes at high amplitudes 

and frequency of about 2-5 spikes per second. We used the behavioural severity of the first 

induced seizure and the number of kindling stimulations required to induce the first bilateral 

clonic convulsive seizure (class 5 seizure according to Racine scale) as indirect measure of 

hyperexcitability.  More than half of 5xFAD mice (6 out of 10) had a class 5 behavioural seizure 

after the first kindling stimulation and after all subsequent stimulations, while an average of 8 

stimulations were required to invoke a class 5 seizure in the WT group (Figure 5.1a,b). 

Additionally, the 5xFAD mice had on average significantly longer electrographic seizures and 

more severe (according to Racine scale, (Racine, 1972)) behavioural seizures (Figure 5.1c, d). 

The WT mice on average spent more time in the novel arm of the Y maze compared to the 

familiar arm, which is the normal behaviour of a mouse with intact spatial memory. In contrast, 

the 5xFAD mice showed no difference between the average time spent in the novel and familiar 
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arms of the Y maze when compared to the control group (Figure 5.1. e), suggesting impairment 

in hippocampal-based spatial memory.   

Figure 5.1. 5xFAD mice show hyperexcitable phenotype and impaired spatial memory. a. The 
5xFAD mice had more severe seizures after the first stimulation compared to WT. b. Significantly fewer 
stimulations were required to induce the first bilaterally convulsive (Class 5) seizure in the 5xFAD 
compared to WT. c,d. the duration and Racine score of seizures experienced by 5xFAD mice were on 
average significantly higher compared to WT. e. The 5xFAD mice spent on average equivalent time in 
the novel and familiar arms of the Y-maze, while the WT group spent more time exploring the novel 
arm. *P<0.05, **P<0.01, ***P<0.001 and ****P< 0.0001. Box and whisker plots display the mean ± 
standard error of the mean (SEM).  

5.3.2. Recurrent seizures lead to increased amyloid deposition.  

Immunohistochemical labelling of amyloid plaques with Thioflavin S revealed widespread 

amyloid pathology throughout cortical regions and the entire hippocampal formation in 5xFAD 

mice (Figure 5.2.a,b). Notably, the Kindled 5xFAD showed a significant increase in ThioS-IR 

plaque area compared to shams. This effect was observed both in dorsal and ventral 

hippocampal sections (Figure 5.2. c,d). Moreover, the kindled 5xFAD brains showed vascular 

Aβ deposition in the leptomeningeal vessels, consistent with cerebral amyloid angiopathy 

(CAA, Figure 5.2.e). This pattern of vascular deposition was not observed in non-kindled 

5xFAD mouse brain.  
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Figure 5.2. Recurrent seizures are associated with increased amyloid deposition in the hippocampus 
of 5xFAD mice. Thioflavin S stained brain sections of a. Sham 5xFAD and b. Kindled 5xFAD. The average 
ThioS-immunoreactive area fraction was compared between kindled and sham 5xFAD groups, revealing a 
total increase of amyloid plaque-covered area in Kindled group both in c. ventral and d. dorsal hippocampal 
sections. e. The Kindled 5xFAD brains showed histopathological features of cerebral amyloid angiopathy, 
reflected by vascular amyloid deposition.  
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5.3.3. Seizure-induced gene expression changes in 5xFAD mice 
To explore alterations in the cellular responses to recurrent seizures in an unbiased manner, we 

performed RNA sequencing of hippocampal tissue from all 42 mice in the four experimental 

groups. Dimensionality reduction and principal component analysis showed group-specific 

clustering of samples and no batch effects between cohorts (Figure 5.3 a,b). Sample clustering 

by a principal component analysis of the top 1000 most variant genes revealed distinct 

clustering of 5xFAD and WT samples showing a relatively clean separation by genotype and 

kindling group (Figure 5.3 c). The first principal component accounted for 40.9% of the total 

variance and separated the mice by genotype into the 5xFAD and WT groups, while the second 

principal component separated the samples into kindled and sham groups (Figure 5.3 a).  

Since we have a two-variable experimental design, with each variable representing the effect 

of the respective pathology (5xFAD – Alzheimer’s Disease, kindling – epilepsy), we set up 

several group contrasts to delineate the singular and combined effect of each pathology. 

Additionally, to capture gene expression changes caused by the interaction between the two 

variables, we conducted nested comparisons with interaction effect between the two pairs of 

experimental conditions and respective controls. Differential expression analysis identified 

hundreds of differentially expressed genes at FDR<0.05. The volcano plots a-e in Figure 5.4 

show the distribution of differentially expressed genes for each comparison group, while the 

pyramid plot in Figure 5.4 f summarizes the total number of significantly over- and under-

expressed genes across all contrasts. Consistent with previous reports, almost three times as 

many of the DE genes were upregulated (n=424) in AD animals as were downregulated 

(n=116) in 5xFAD-Sham animals compared to WT controls (Figure 5.3 a). Functional 

enrichment analysis revealed that the downregulated genes were mostly involved in synaptic 

signalling and neurotransmitter synthesis/trafficking, while the upregulated genes were largely 

inflammatory and gliosis related (Figure 5.4 g). 
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Figure 5.3. Principal component analysis of RNA-seq transcriptomics data. a. All 42 RNA-seq 
samples are plotted along different combinations of the top five principal components. b. summary PCA 
plot. The percent of variance explained by each principal component is displayed in the corresponding 
axis. c. sample clustering based on the top 1000 most variant genes in the dataset. 
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Interestingly, the overall direction of kindling-induced gene expression changes appeared to be 

genotype dependent: in the 5xFAD group, more than twice as many of the DE genes were 

upregulated (n=192) in kindled animals as were downregulated (n=77), whereas in the WT 

group the opposite pattern is seen, with twice as many (n=128) downregulated genes in kindled 

mice compared to the 65 genes that were upregulated (Figure 5.4 c). Moreover, there was a 

striking increase in the number of DE genes between double pathology and double control 

groups (Kindled 5xFAD vs Sham WT), indicating the strong likelihood of synergistic 

interaction between AD pathology and recurrent seizures (Figure 5.4 d). 

The dramatic effect of dual pathology is also observed in the PCA plots in Figure 5.3 a and b, 

with all samples in the Kindled 5xFAD group always forming a well-defined distinct cluster. 

To identify the genes, changes in the expression of which could only be attributed to the 

interaction effect between the 5xFAD genotype and kindling, we performed a nested pair-wise 

differential expression analysis with interaction effect. A total of 291 genes were identified as 

significantly different according to the nested comparisons analysis, with several immediate 

early genes as well as ion channel receptors/subunits and astrocytic genes at the top of the list.  
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Figure 5.4. Differential expression analysis of RNA sequencing data. Volcano plots showing the 
gene expression distribution for the following group contrasts: a. 5xFAD-kindled vs 5xDAD-sham, b. 
5xFAD-sham vs WT-sham, c. WT-kindled vs WT-sham, d. 5xFAD-kindled vs WT-Sham, d. 
interaction effect only. f. Numbers of significant (FDR < 0.05, FC>2) differentially expressed genes for 
all group contrasts. Blue represents down- and red represent up-regulated genes. g. Gene-Set enrichment 
analysis on the significant DE genes between Kindled-5xFAD and Sham-5xFAD groups.  
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5.3.4. Correlation Network analysis 
In order to characterize the dual pathology signature in the context of molecular networks we 

used the WGCNA framework to construct two gene coexpression networks and define distinct 

transcriptional modules. First, to investigate the global emergent transcriptomic changes 

caused by AD pathology and recurrent seizures and examine the effect of each pathology 

(5xFAD-AD, kindling-epilepsy) on the co-expression modules, we constructed a gene 

coexpression network from filtered and normalized gene count table that included all 42 

samples and 4 experimental groups involved in this study. This network will be referred to as 

the “global” network throughout this chapter.  

Additionally, since the PCA indicated that the group separation and transcriptomic variations 

of the samples were mainly determined by the genotype, in an attempt to resolve the nuances 

in seizure-induced transcriptomic changes specific to the 5xFAD mice, which could otherwise 

be missed in the global coexpression network, we constructed a 5xFAD-specific coexpression 

network which included only the 5xFAD samples. The coexpression networks were 

hierarchically clustered into groups of coexpressed genes called modules (for detailed 

methodology description refer to section 4.2.2). Because each co-expression module groups 

together genes that are highly correlated, each module can be represented by a single 

representative expression profile called a module eigengene. Module eigengenes lead to a 

natural measure of similarity (membership) of all individual genes to all modules. This can be 

measured by kME, which is the correlation of the expression of the gene to the module 

eigengene. Genes with highest kME, called hub genes, are centrally located inside the module 

and represent the expression profile of the entire module.  

To assess whether the given module was related to disease progression or either of the two 

experimental variables, we correlated each module eigengene to the two group contrasts and 

the pathologies they represent (Kindled : Sham – Epilepsy effect, 5xFAD : WT – AD effect) 

as well as amyloid plaque area, seizure severity measures and Y-maze data. Additionally, to 

determine whether the changes in the coexpression modules are driven by specific cell 

populations, we also interrogated the cell-type nature of each module by assessing whether it 

was enriched in cell-type specific markers. The resultant module correlations, cell-type specific 

enrichment data as well as intramodular connectivity relationships within the global and 

5xFAD-specific networks were summarized in multi-layer circular heatmaps in Figure 5.5. and 

Figure 5.6.  
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5.3.5. Global transcriptomic signatures of AD pathology and recurrent seizures  
Hierarchical clustering of the global coexpression network identified 12 coherent gene modules 

with highly correlated expression patterns. Functional annotation revealed clear ontologies for 

all 12 modules, and varying degrees of cell-type specific enrichment. Nine out of the 12 

modules showed significant (P<0.05) correlation to either AD or Epilepsy traits, forming two 

generally defined groups: upregulated – showing strong positive correlation to seizure severity 

and amyloid plaque load, and downregulated – showing strong negative correlation with 

pathology traits.  

The two most notably upregulated modules in the global network are the purple cholesterol 

metabolism-related module, and the turquoise immune response-related modules. The 

cholesterol metabolism module shows strong and highly significant correlation to both 5xFAD 

genotype and kindling/seizures, establishing it as the dual pathology-associated module. The 

central regulatory hub gene of this module is KCNIP3, also known as Calsenilin. Functional 

and cell-type enrichment analysis of the member genes constituting this module revealed strong 

enrichment in astrocytic markers and pathways involved in cholesterol synthesis and transport 

(Figure 5.5.b).  

The highly upregulated Immune response module is comprised of 1284 genes and has Tlr2 

(toll-like receptor 2) as its central regulatory hub gene. This module functionally annotates to 

inflammatory and immune response pathways and shows significant enrichment in microglia-

specific markers such as TYROBP and TREM2. This module is highly upregulated in AD and 

shows strong correlation to seizure severity. To incorporate the cell-type nature and pathology 

associations of these notable modules into their description, we subsequently refer to the 

turquoise and purple modules of the global network as “AD-associated” and “AD+Epilepsy-

associated” modules, respectively. Both the AD-associated AD+Epilepsy associated modules 

are correlated with seizure severity measures and increased amyloid plaque deposition.  
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Figure 5.5. The global gene co-expression network. a. WGCNA identified 12 co-expression modules 
labelled by colour in the outermost segment. GO analysis was used to identify the principal biology 
represented by each module. The central regulatory hub genes are indicated on each colour-coded 
segment. Pearson correlation of module eigengenes to the behavioural and histopathological outcomes 
shown in the red-blue heatmap segment (red, positive correlation; blue, negative correlation). Each 
block corresponds to either a categorical factor representing the group contrast [FAD=all5xFAD vs 
allWT; Epilepsy=allKindled vs allSham] or a continuous number representing the behavioural and 
histopathological outcome measures [seizure severity=average Racine score of behavioural seizures per 
animal, hyperexcitability=the number of stimulations required to elicit the first class V seizure, amyloid 
load=the average % area of hippocampus covered by amyloid plaques per animal]. The cell type 
enrichment of each module was assessed by module gene overlap with cell-type-specific marker lists 
of neurons, oligodendrocytes, astrocytes, microglia and vascular endothelial cells, shown in green 
heatmap segment. Module relatedness is shown in the central dendrogram. b. top significantly enriched 
(p<0.05) pathways of upregulated cholesterol metabolism module and c. downregulate amyloid beta 
clearance module.  

Among the downregulated modules which are anti-correlated to AD and seizure pathologies 

are the blue-ribosome, cyan-amyloid clearance, tan-GABAergic interneuron and pink-BDNF 

signalling modules. The large blue module with over 3000 member genes is enriched in 

ribosomal proteins, translation and metabolic pathways. It shows strong negative correlation to 

all pathology traits and especially seizure severity – indicating the more severe the seizures, 

the more they interfere with the cellular homeostatic processes. The tan-GABAergic 

interneuron module is downregulated in AD, and shows strong negative correlation to seizure 

severity and hyperexcitability. This module is enriched in inhibitory neuronal markers and 

synaptic proteins and has Synapsin 2 as its central hub gene. Another downregulated module 

is the smaller cyan module with 93 member genes and Lrp1 (low-density lipoprotein receptor-

related protein 1) as its regulatory hub. This module is enriched for pathways involved in 

amyloid clearance.  

5.3.6. Specific transcriptomic changes in 5xFAD coexpression network 
The 5xFAD-specific gene coexpression network was constructed in the same manner as the 

global network. WGCNA hierarchical clustering algorithm identified 17 well-defined modules 

of coexpressed genes representing distinct transcriptional responses to kindling-induced 

recurrent seizures. Analogous to the global network, 13 out of the 17 modules in the 5xFAD-

specific network showed significant correlation to one or more pathology traits. Based on the 

direction of eigengene expression change, there are 7 upregulated, 4 relatively unchanged and 

6 downregulated modules, organized in diverging order in the circular heatmap in figure 5.6.  

Functional enrichment analysis revealed more specific pathway annotations compared to those 

in the global network (Figure 5.7.). 
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Figure 5.6. 5xFAD-specific gene co-expression network. WGCNA identified 17 co-expression 
modules labelled by colour in the outermost segment. GO analysis was used to identify the principal 
biology represented by each module. The top 6 central regulatory hub genes are indicated on each 
colour-coded segment. Pearson correlation of each module eigengene to the behavioural and 
histopathological outcomes shown in the red-blue heatmap segment (red, positive correlation; blue, 
negative correlation). Each block corresponds to either a categorical factor representing the group 
contrast [Epilepsy phenotype=Kindled5xFAD vs Sham5xFAD] or a continuous number representing 
the behavioural and histopathological outcome measures [seizure severity=average Racine score of 
behavioural seizures per animal, memory impairment = (time spent in novel/time in familiar), amyloid 
load=the average % area of hippocampus covered by amyloid plaques per animal]. The cell type 
enrichment of each module was assessed by module gene overlap with cell-type-specific marker lists 
of neurons, oligodendrocytes, astrocytes, microglia and vascular endothelial cells, shown in green 
heatmap segment. Module relatedness is shown in the central dendrogram.  
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The most notable upregulated modules showing highly significant correlation to increased 

amyloid plaque pathology and more severe seizure traits, is the purple module, with ~300 

member genes (Figure 5.5.a). This module contains immediate early genes such as Pcdh8, 

Nptx2, BDNF as central regulatory hubs, and shows enrichment in apoptotic pathways, as well 

as proteins involved in Huntington’s Disease and Parkinson’s Disease (Figure 5.7.a).  The 

neighbouring darkgrey-complement activation module is closely related to the purple-

immediate early gene activation module, showing robust upregulation and correlation to 

amyloid load. This grey-complement activation module is enriched in astrocytic markers and 

has C3 (complement component 3) as its central hub.  

 Another module that is highly upregulated in kindled 5xFAD is the turquoise-mTOR 

signalling module. This large module shows significant positive correlation to seizure duration 

and amyloid plaque load and is enriched in astrocytic markers and cellular stress-related 

pathways such as mTOR activation, heat shock protein induction and MAPK cascades. Notably, 

the second most significant pathway associated with this module is “Platelet Amyloid 

Precursor Protein” pathway (Figure 5.7.b).  

The downregulated modules (blue, greenyellow, green, lightblue, yellow, red) located on the 

opposite end of the heatmap show varying degrees of the generally conserved pattern, with 

negative correlation to epilepsy/seizure measures and amyloid plaque load. These modules are 

enriched in various synaptic transmission pathways and processes, as well as neuron-specific 

markers and are likely representing different neuronal populations.  

In summary, the RNA sequencing and network analysis of gene expression data showed 

distinct transcriptional responses to kindling-induced recurrent seizures, with immune response 

modules being upregulated and synaptic transmission modules being downregulated.  
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Figure 5.7. The top enriched pathways associated with corresponding 5xFAD-specific modules. a. 
purple-immediate early gene activation, b. turquoise-mTOR signalling, c. tan-NLRP3 inflammasome 
d. brown-immune response e. green-PV+ GABAergic interneurons. Bars represent the -Log10-Pvalue 
of significance associated with the hypergeometric test.  

 

5.3.7. Reactive gliosis and Vim-IR astrocytes around amyloid plaques in 5xFAD 
Since our transcriptomic evidence strongly suggested glial involvement in the synergistic 

exacerbation of pathology, we performed IHC labelling of astrocytes and microglia with GFAP 

and Iba1 – well-established markers of astrogliosis and microgliosis, respectively. It should be 

noted that the IHC experiments were carried out on the hippocampal tissue from the same 

brains (contralateral hemisphere) that were used for RNA -seq analysis. A pronounced increase 

of GFAP-immunoreactivity was observed in both Kindled and Sham 5xFAD groups compared 

to WT (Figure 5.8.a and 5.9), with more apparent congregation of enlarged, hypertrophic 
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astrocytes around amyloid plaques in kindled 5xFAD (Figure 5.9.a). The extent of GFAP 

immunolabelling across our experimental groups was closely correlated with GFAP mRNA 

expression and followed a similar pattern, from relatively low expression in Sham WT group, 

followed by increase in kindled WT and Sham5xFAD mice, and showed highest expression in 

the double pathology Kindled5xFAD group (Figure 5.8.b). To further investigate the astrocytic 

response to plaque formation, another reactive astrocytic marker, Vimentin, was studied. 

Similar to that of GFAP, Vimentin immunoreactivity was consistent with Vim mRNA 

expression (Figure 5.8.c), however its expression distribution followed a distinct pattern: 

vimentin-positive astrocytes were only located distinctly around the amyloid plaques in the 

Kindled-5xFAD brains, while GFAP-positive astrocytes were found throughout the brain. 

Many of the hypertrophic reactive astrocytes co-expressed GFAP and vimentin (Figure 5.9.a). 

Among the cells only expressing one of the markers, there were more single positive cells for 

GFAP than for vimentin. The expression of Vimentin was low in Sham 5xFAD and was 

colocalized with vasculature. Iba1-positive microglia were omnipresent in both kindled and 

sham 5xFAD tissue, however the majority of the activated microglia of characteristic amoeboid 

shape were seen in close proximity to amyloid plaques, making direct contact with A6E10-

immunoreactive deposits.  
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Figure 5.8. Reactive astrogliosis and hypertrophic astrocytes in Kindled 5xFAD mice. a. maximum-intensity 
projections of optical slices (Z-stacks) depicting the Immunohistochemical staining of Astrocytes with GFAP and 
Vimentin in Kindled 5xFAD, Sham 5xFAD and Kindled WT groups. The Z-stacks were captured with a 60x 
magnification oil-immersion objective on Nikon Ar1 confocal microscope. b, c. normalized mRNA expression of 
GFAP and Vimentin. d. A graphical representation of a homeostatic astrocytes seen in WT groups and a 
hypertrophic disease-associated Vim+ astrocyte seen in dual pathology group.  
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*components of subpanel d have been adapted from ref (Vainchtein & Molofsky, 2020) in accordance with the 
Creative Commons 4.0 licence regulations.  

 
Figure 5.9. Vimentin-positive reactive astrocytes around amyloid plaques in Kindled5xFAD but 
not Sham-5xFAD hippocampus. a. GFAP and Vim (DAPI counterstain) immunostaining of 
hippocampal tissue displaying Vimentin-IR reactive astrocytes congregating around amyloid plaques 
in Kindled 5xFAD but not in b. Sham 5xFAD. Asterisks mark the centre of several large amyloid 
plaques. 

 

5.4. Discussion 
5.4.1. AD with seizures as a distinct pathophenotype 
A recent study involving over 20,000 patients shows that seizures in AD are highly recurrent 

(>70% recurrence rate, within <8 months) (Vöglein et al., 2020), and are associated with a 

more severe cognitive and biochemical disease profile. However, only a subset of AD patients 

would develop seizures. Similarly, among patients with late onset epilepsy of unknown 

etiology (LOEU) (Costa et al.) and pathogenic (AD-like) levels of Amyloid beta 1-42 in the 

CSF, in the 3-year follow up, a subset (7/40, 17.5%) did indeed develop dementia/cognitive 

decline, while 53.8% did not. In other words, even after 3 years, more than half of the LOEU 

patients with pathogenic A-beta 1-42 levels did not convert to dementia patients (Costa et al., 
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2019). Another study looking at CSF biomarkers in a large cohort (~18,000 individuals) of AD 

patients with or without seizures demonstrated that the subpopulation of AD patients who 

developed seizures had biochemically more pronounced disease profile compared to those 

without seizures (Banote et al., 2022). A strong predictor of disease severity seems to be 

younger age of clinical symptom presentation, where pedigrees with very early onset of FAD 

(<40 years old) showing very high rates (>80%) of epileptic phenotypes (Snider et al., 2005). 

Additionally, 84% of patients with Down’s syndrome who progress to dementia also develop 

seizures (Aller-Alvarez et al., 2017). Together, this evidence supports the hypothesis that the 

dementia patients experiencing seizures represent a distinct subclass of patients, demonstrating 

more severe biochemical and cognitive phenotype which is likely compounded by the 

synergistic interaction between amyloid pathology and recurrent seizure activity.  

Pre-clinical models do not always resemble the spectrum of human disease. For example, 

seizure frequency in patients with FAD seems to be higher than that observed in most FAD 

mice. Therefore, to better recapitulate the transcriptomic and neurochemical profile of human 

patients in a preclinical model we developed a dual pathology model by establishing a recurrent 

seizure phenotype in the 5xFAD mice. The results of our study are consistent with the above-

mentioned clinical evidence, indicating that in addition to more severe cognitive and CSF-

biochemical profile, the seizure-prone subpopulation of AD patients has a more severe 

histopathological phenotype, and more pronounced molecular neuroinflammatory profile. 

5.4.2. Neuronal activity-dependent increase in amyloid deposition in kindled 5xFAD 
Although AD is increasingly viewed as a heterogeneous syndrome, its amyloid-centric 

histopathology as well as fMRI signature seems to be remarkably consistent: amyloid deposits 

predominate in brain regions of the default mode network, which shows deactivation deficits 

in AD, suggesting that neuronal activity regulates amyloid-β production and deposition 

(Buckner et al., 2005; Palop & Mucke, 2016). Extracellular soluble Aβ aggregates into amyloid 

plaques in a concentration-dependent manner, and interstitial fluid Aβ concentration is closely 

associated with plaque growth (Bero et al., 2011; Yan et al., 2009), therefore, the size and total 

area of amyloid plaques can be used as an indirect measure of overall Aβ content. We compared 

the total percentage of area occupied by amyloid plaques between Kindled-5xFAD and Sham-

5xFAD to assess whether recurrent seizures increase Aß concentration and deposition. In 

agreement with other reports (Gourmaud et al., 2022) we found that recurrent seizures lead to 
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overall increase in amyloid plaque area in the hippocampus. This is consistent with the 

hypothesis that neuronal activity  regulates Aß production and deposition (Bero et al., 2011).   

Subsequent integration of the mouse EEG, behavioural data and histopathological outcome 

measures with the RNAseq data from the same brain tissue into coexpression networks allowed 

for identification of distinct transcriptional responses to the pathology associated with 5xFAD 

genotype and kindling-induces recurrent seizures in the form of coherent gene coexpression 

modules.  Interestingly, the dual pathology-associated Cholesterol Metabolism module is a 

better correlate/predictor of amyloid load than the AD-associated module, as it shows stronger 

and more significant Pearson correlation with amyloid plaque area than the AD-only module. 

This is not an artifact of a multiple comparison analysis, where larger modules show inflated 

P-values associated with the Pearson correlation coefficients (PCC) due to the large number of 

comparisons made. In fact, this effect is understated, because the AD-associated module is 

much larger, with over 1500 member genes, which would artificially increase the -log(P-value) 

of its correlation (PCC) to amyloid plaque number/area, yet it shows correlation that is orders 

of magnitude less significant (though still statistically significant) than that of the double 

pathology/AD+Epilepsy module. This observation reinforces the causal role of recurrent 

seizure activity in increasing the overall concentration of amyloid beta and plaque deposition. 

By combining recently developed optogenetic methodology with multi-photon live imaging, 

several benchmark studies have demonstrated that chronic synaptic hyperactivity is causally 

related to deposition of amyloid plaques (Bero et al., 2011; Yamamoto et al., 2015; Yan et al., 

2009). This is also supported by the notion of neuronal activity-dependent regional 

vulnerability to amyloid deposition, where cortical areas of high neural activity, particularly in 

the default-mode network, show the largest amyloid burden (Buckner et al., 2005).  

5.4.3. Distinct transcriptomic modules correlated with 5xFAD-Kindled double 
pathology 
The initial principal component analysis (PCA) of RNAseq data indicated that the genotype of 

the animals had a stronger effect on sample clustering than their kindling status (Figure 5.3.a), 

suggesting that the hippocampal transcriptome is distinct between 5xFAD and WT animals. 

Therefore we constructed a second gene coexpression network that included only the 5xFAD 

samples. Functional enrichment analysis revealed more specific pathway annotations 

compared to those in the global network (Figure 5.7). Furthermore, the 5xFAD-specific 

coexpression network allowed for delineation of secondary small submodules within the global 
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pathways that represent 5xFAD-specific distinct transcriptional responses to recurrent seizures. 

For instance, in the Global network we detected a large and robust myelination-related module 

(labelled green-myelination) which is highly enriched in oligodendrocyte-specific protein 

markers and components of myelin sheath and shows no significant correlation to any group 

contrast or pathology trait (Figure 5.5a). However, in the 5xFAD-specific network, a finer split 

of the gene dendrogram allowed for detection of two more specific modules labelled as black-

myelination and navy-demyelination. In fact, it is apparent from the intramodular connectivity 

dendrogram that the genes in the small navy-demyelination module constitute a distinct 

submodule of the larger black-myelination module. Both modules show strong enrichment in 

oligodendrocyte-specific protein markers and protein components of the myelin sheath, 

together representing the global myelination pathways, equivalent to the corresponding 

homologous green module in the global network.  

Further examination of the enriched pathways associated with these 5xFAD-specific modules 

indicated that while the black module represents the homeostatic processes involved in axon 

ensheathment, the small navy submodule represents the pathogenic perturbations in the 

myelinating pathways and is associated with demyelination seen in the context of aging and 

neurodegenerative disorders such as multiple sclerosis. Furthermore, while the homeostatic 

black-myelination module shows no expression change across kindled and sham animals, the 

pathogenic navy-demyelination module shows a consistent trend towards upregulation in 

kindled-5xFAD group and is positively correlated with seizure severity and amyloid plaque 

load. Another example of this phenomena is seen with the immune response-related modules. 

In the 5xFAD-specific network the tan-NLRP3 inflammasome and brown-immune response 

modules show a high degree of intramodular connectivity and are both highly enriched in 

microglial-specific markers. Furthermore, it is apparent from the topological overlap 

dendrogram that the tan-NLRP3 inflammasome module is a submodule of the larger more 

general brown-immune response module, however, it shows a distinct correlation pattern to 

pathology traits, which is highly informative. While the general brown-immune response 

module is upregulated in the epileptic 5xFAD mice and shows positive correlation with seizure 

severity and amyloid load, the tan-NLRP3 inflammasome module is equally expressed in both 

epileptic and sham 5xFAD groups but shows positive correlation to seizure severity and 

memory impairment and negative correlation to amyloid load. Since the NLRP3 
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inflammasome activation is required for amyloid clearance (Heneka et al., 2013) it is logical 

that these two measures would be anticorrelated. 

5.4.4. Activity-dependent elimination of synapses may be facilitated by immediate 
early genes and astrocytic complement activation 
The results of our network analysis strongly indicate the involvement of cholesterol in the 

mechanism of seizure-induced synergistic exacerbation of AD pathology. The main finding 

from our global network analysis was the distinct dual pathology-associated cholesterol 

metabolism module (Figure 5.5a,b, purple) which was upregulated in the context of both AD 

and epilepsy pathology. Genetic variation in a cholesterol transport protein, apoE, is the most 

common genetic risk factor for sporadic AD, and several GWAS studies have demonstrated a 

link between the total brain cholesterol content and the risk of developing AD (Wood, Li, 

Muller, & Eckert, 2014). In the adult brain, the neurons lose the ability to produce cholesterol, 

and therefore rely on astrocytes to synthesise and transport cholesterol with apolipoprotein E. 

In a recent benchmark paper Wang et al. demonstrated that astrocytes can directly control Aβ 

production in neuronal membranes of APP/PS1 mice and neuronal Aβ accumulation is tightly 

regulated by astrocytic cholesterol synthesis and apoE transport	(H. Wang et al., 2021). By 

transporting cholesterol into membrane apoE regulates the exposure of APP to either the non-

amyloidogenic alpha secretase processing, or the amyloidogenic β and g secretase processing 

(Figure 5.10). Since cholesterol interacts directly with APP and both β- and γ-secretases show 

higher activity in cholesterol-rich lipid rafts, the cleavage of APP and the resulting amyloid 

production are strongly linked to the amount of plasma membrane cholesterol and its 

distribution (Ikonen, 2008; Rudajev & Novotny, 2022; H. Wang et al., 2021).  
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Figure 5.10. Cholesterol content of the plasma membrane controls the amyloidogenicity of APP 
processing. Higher levels of cholesterol increase the rigidity and permeability of the membrane, and 
favour the amyloidogenic processing of APP by beta- and gamma-secretases, while lower levels of 
cholesterol render the plasma membrane more fluid and promote the non-amyloidogenic, alpha 
secretase cleavage of APP. * Diagram adapted from (H. Wang et al., 2021), in accordance with the 
Creative Commons 4.0 copyright regulations.  

 

The central regulatory hub of cholesterol metabolism module is calsenilin or Kcnip3/KChIP3, 

which is dramatically overexpressed in dual pathology group, and overexpressed to a lesser 

degree in the 5xFAD-sham and WT-kindled groups compared to the double controls. Calsenilin 

is a multifunctional calcium-binding protein which has been independently identified to be: i) 

a binding partner of PS1/g secretase complex ii) a calcium-dependent dynorphin gene 

transcription repressor that interacts with the downstream regulatory element antagonist 

modulator (DREAM), and iii) a pore-forming Kv4.2 channel interacting protein (Buxbaum et 

al., 1998; Jang et al., 2011). Consistent with our findings, increased expression of calsenilin 

has been reported in brains of AD patients and hAPP mice, where it is colocalized with amyloid 

plaques and is involved in Abeta production and apoptosis (Dong-Gyu et al., 2004).  In contrast, 

knocking out calsenilin seems to be neuroprotective, reportedly resulting in 50% reduction of 

Abeta 1-40/1-42 in Kcnip3-KO mice, as well as increased long-term potentiation in CA1 
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(Alexander et al., 2009; Lilliehook et al., 2003). As a Kv4 channel interacting protein, 

calsenilin regulates neuronal membrane excitability through regulating the A-type transient 

current (Shibata et al., 2003). Notably, the Kcnip3 knock-out mice exhibit increased LTP in 

CA1 and enhanced memory in hippocampal-based fear conditioning paradigm, most likely due 

to reduction in A-type current (Alexander et al., 2009; Lilliehook et al., 2003; Shibata et al., 

2003). Additionally, calsenilin overexpression regulates N-cadherin e-cleavage and 

downstream b-catening signaling (Jang et al., 2011). Collectively, this line of evidence 

suggests a central role for Kcnip3 in synaptic pruning/negative regulator of LTP in the context 

of AD and our double pathology model.  

Interestingly, the central hub of the analogous double pathology associated module in the 

5xFAD-specific network is Protocadherin 8 (Pcdh8), also referred to as arcadlin, which has a 

similar ability to induce N-cadherin endocytosis and thus eliminate synapses. In fact, Pcdh8 is 

implicated in the control of dendritic spine density (Yamagata et al., 1999; Yasuda et al., 2007). 

Upon cis binding of Pcdh8 to N-cad, Pcdh8 ICD activates the MAP kinase (MAPK) TAO2β, 

which in turn activates MEK3, subsequently phosphorylating p38. The feedback signaling of 

p38 on TAO2β results in the synaptic endocytosis of N-cad and Pcdh8. Through this pathway, 

Pcdh8 was shown to downregulate the number of dendritic spines in rat hippocampal neurons 

(Takeuchi et al., 2020). The differential expression of PCDHs and their compartmental 

distribution define the number of synapses generated in a given region. In some cases, the 

formation of new synapses is favored, whereas, in other cases, there is a downregulation in the 

number of synapses. The expression of Pcdh8 is slightly downregulated in the 5xFAD-Sham 

group and shows a robust increase in kindled 5xFAD group, while remaining unchanged in 

kindled WT vs sham WT. This suggests that the Pcdh8-mediated reduction of dendritic spine 

density is a feature of 5xFAD animals only. 

5.4.5. Complement-glia mediated synaptic pruning  
Another notable finding of this study was the profound reactive astrogliosis seen in the near 

proximity to amyloid plaques. Both the transcriptomic and IHC evidence indicated the 

involvement of astrocytes in mediating dual pathology. In addition to robust pro-inflammatory 

cascade upregulation, the transcriptomic analysis identified a distinct 5xFAD-specific 

astrocytic module (Grey, complement activation) to be upregulated in the 5xFAD-kindled 

group. The top hubs of this module are astroglial markers such as C3 (complement component 

3), Aquaporin 4 (Aqp4), and Synaptopodin 2 (Synpo2). Immunohistochemical evidence further 
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supports the conclusion that astrocytes in the hippocampus of dual pathology mice are 

undergoing reactive gliosis. We observed reactive Vimentin-positive astrocytes to be almost 

always associated with amyloid plaques. Vimentin is a type III intermediate filament, which is 

rarely expressed in astrocytes in the mature, healthy brain, and only by precursor cells in 

regions where neurogenesis occurs. However, Vimentin is upregulated in activated astrocytes 

undergoing reactive gliosis, and among other functions, takes part in facilitating the 

intracellular transport across enlarged cell volume in reactive hypertrophic astrocytes. It has 

been shown that cytokines released by activated microglia such as TNF-α, IL-1α and C1qa, 

directly polarize a subset of astrocytes towards a neurotoxic phenotype (Liddelow et al., 2017). 

This astrocyte subtype is characterized by increased expression of C3 as a typical marker. 

Several lines of evidence show that the C1q/C3/CR3-mediate classical complement activation 

cascade (CCC) leads to early synapse loss, and age-associated cognitive decline in mouse 

models of amyloidosis and tauopathy (Hong et al., 2016; Wu et al., 2019).  In this pathway, the 

astrocytes induce the release of C1q from neurons, leading to the cleavage of astrocyte derived 

C3. Activated C3 fragments (C3b), in turn “tag” the synapse for elimination. The microglial 

C3 receptors (C3R) bind to C3b and recognize it as “eat me” tag, and proceed to phagocytose 

the synaptic structure (Figure 5.11d). Interestingly, APOE, a major risk factor for AD, has been 

shown to interact with C1q and thereby modulate CCC activity. Additionally, Neuronal 

Pentraxin 2 (Nptx2) – an activity dependent immediate-early gene that was dramatically 

upregulated in dual pathology group and constitutes a hub gene of the dual-pathology 

cholesterol metabolism module, has been recently established as a regulator of complement 

cascade (J. Zhou et al., 2022). Lastly, the resident microglia in the adult CNS phagocytose 

synapses when challenged by synaptotoxic Aβ, indicating that activation of the complement 

cascade and the subsequent initiation of microglial synapse engulfment may contribute to the 

synaptotoxic effects of Aβ.  This is further supported by pathway enrichment analysis of the 

overexpressed genes in the 5xFAD-kindled group showing robust upregulation of phagocytic 

processes and complement pathway (Figures 5.7.d, 5.11.e).  

Based on above conclusions, we propose a mechanistic paradigm potentially mediating the 

accelerated cognitive decline in the subpopulation of epileptic AD patients, where recurrent 

seizure activity dependent sustained overexpression of synaptic plasticity-regulating genes and 

accumulation of amyloid beta lead to progressive structural alterations in the physiology and 

neurochemistry of the neurons, which, in turn results in perturbations of neuronal 
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representations and loss of encoded information. In this synergistic paradigm (Figure 5.11), 

three pathways converge on the same outcome, namely widespread loss of synapses. First, 

excessive neuronal activity such as recurrent seizures ensure the sustained overexpression of 

activity-dependent immediate early genes such as KCNIP3 and Pcdh8 leading to aberrant 

synaptic pruning and structural degeneration of dendritic spines through endocytosis of N-

cadherin (Figure 5.11.b, c). This trans-synaptic remodelling subsequently alters the intrinsic 

neuronal excitability by reducing the overall surface area of neurons and decreasing their total 

membrane capacitance (Šišková et al., 2014), rendering the network even more hyperexcitable. 

Additionally, the activity-driven accumulation of amyloid beta (Figure 5.11.a) leads to 

complement activation and phagocytic destruction of synapses by the resident activated glia 

(Figure 5.11.d). The resultant progressive synaptic loss quickly becomes widespread, leading 

to accelerated cognitive deterioration.  
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Figure 5.11. Complement-glia mediated synaptic pruning. Our hypothesized model of synaptic loss 
driven by the synergistic interactions between activity-dependent amyloid deposition (a), immediate-
early gene overexpression (b, c),  complement activation (d, e) and microglial phagocytic removal of 
synapses. * components of subpanels a. and b. have been adapted from ref. (Palop & Mucke, 2016) and 
(Pancho, Aerts, Mitsogiannis, & Seuntjens, 2020), respectively, in accordance with Creative Commons 
4.0 licence regulations. 
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CHAPTER 6 
 
GENERAL DISCUSSION 
6.1. Summary of main findings and conclusions 
The overarching aim of this PhD work was to better understand the molecular mechanisms 

underlying the bi-directional relationship between AD and epilepsy. Upon extensive review of 

the current literature (Chapter 1), it became increasingly evident that AD-like dementia and 

epilepsy syndromes are complex, multifactorial and heterogeneous diseases and therefore must 

be investigated through models which take into account the diversity in aetiology mechanisms 

and therapeutic responses. Integrative systems-level analyses have shown to facilitate more 

complete investigation and comprehensive understating of complex biological systems. A data-

driven network-based approach was therefore selected to examine the molecular signature of 

the brain which presents with pathophysiology seen in AD patients and most widely used 

mouse models of AD, revealing robust upregulation of inflammatory pathways and immune 

response-related genes, and downregulation of synaptic transmission and synaptogenesis-

related processes (Chapter 2). Next, we utilized a multi-omic approach to characterize the 

molecular signature of the brain which presents with pathophysiology seen in in two distinct 

models of epilepsy: the post-status epilepticus model of temporal lobe epilepsy and the GAERS 

model of absence epilepsy (Chapter 3). Oxidative stress pathways and dysregulated lysine 

catabolism defined the signature of absence seizure pathology, while dysregulation in long-

term potentiation and synaptic signalling processes characterized TLE. We employed 

correlation network analysis to identify distinct protein-metabolite modules associated with 

each phenotype. The modules which positively correlated with more frequent seizures and poor 

cognitive performance were enriched for proteins and metabolites involved in inflammatory 

and cellular stress pathways as well as pathways associated with Alzheimer’s Disease and 

different types of cardiomyopathies. The modules which positively correlated with less 

frequent and less severe seizures and better cognitive performance were enriched for proteins 

and metabolites involved in the TCA cycle, oxidative phosphorylation and other metabolic 

pathways. We then set out to mathematically compare the architecture of the molecular 

networks representing the AD and epilepsy pathologies (Chapter 4). Using publicly available 

transcriptomic data from hippocampal tissue of patients with temporal lobe epilepsy (TLE), 

late onset AD and non-AD controls, we constructed gene coexpression networks representing 
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all three states and employed network preservation statistics to compare the density and 

connectivity-based preservation of functional gene modules between TLE, AD and non-

demented controls. We identified two synaptic signalling-associated modules and two 

metabolic modules showing substantial gain of preservation between AD and TLE, indicating 

that the pathways underlying synaptic function were similarly perturbed in the context of both 

pathologies.  

One of the predictions of network medicine is the so-called “local hypothesis” which implies 

that, gene products implicated in the same disease have a high probability of interacting with 

each other. Likewise, genes associated with diseases that show similar phenotypes such as AD 

and TLE also tend to interact with each other. Our results from Chapters 2, 3 and 4 support this 

notion. Moreover, as detailed in Chapter 4, upon mathematical comparison of the architectures 

of the molecular networks representing the two pathologies, we found that the pathways 

underlying synaptic reorganization and signalling were similarly dysregulated in the context of 

both pathologies. The results from these first three experimental chapters and additional review 

of most recent clinical evidence involving patients with AD/dementia, epilepsy or dual 

diagnoses informed the rationale and experimental design of the fourth and final study 

described in Chapter 5. We hypothesized that due to profound commonalities in the molecular 

signature of AD and epilepsy in the form of highly preserved pathology-associated gene 

modules, when coincided, the two pathomechanisms act as agonists for one another, resulting 

in synergistic exacerbation of pathology and accelerated disease progression. To test this 

hypothesis, we induced a recurrent seizure phenotype in a transgenic FAD mouse, thus 

establishing a dual pathology model to recapitulate the human condition (kindled 5xFAD mice 

represent the subpopulation of AD patients who developed recurrent seizures). We found that 

recurrent seizures exacerbated the amyloid plaque pathology and induced profound reactive 

gliosis in the hippocampus of Kindled 5xFAD mice. Transcriptomic analysis revealed a 

dramatic change in gene expression profile when the two pathologies coincided. The massive 

increase in the number of dysregulated genes in dual pathology group compared to both single 

pathology controls indicated the presence of a significant interaction effect between amyloid 

pathology and recurrent seizures. This distinct dual pathology transcriptome is characterized 

by exacerbated neuroinflammatory profile, reactive gliosis and downregulation of synaptic 

proteins and signalling mechanisms. These results lend support to our proposed two-factor 

disease model for dementia and seizures, where the synergistic interaction between the two 
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patho-mechanisms defines a distinct subpopulation of “dual-pathology” patients, characterized 

by faster disease progression and cognitive deterioration due to more severe histopathological 

and molecular phenotype. Subsequently, we employed an integrative network-based approach 

in an attempt to identify the potential mediators of synergy. Our results indicated the 

complement cascade and activity-dependent IEGs to have central roles in dual pathology, 

leading to the conclusion that complement-mediated synaptic pruning might mediate the 

synergistic acceleration in cognitive decline seen in the seizure-prone subpopulation of AD 

patients.  

Based on above conclusions, we proposed a mechanistic paradigm (Figure 5.11), where 

recurrent seizure activity dependent sustained overexpression of synaptic plasticity-regulating 

genes and accumulation of amyloid beta lead to progressive structural alterations in the 

physiology and neurochemistry of the neurons, which, in turn results in perturbations of 

neuronal representations and loss of encoded information.  

The model builds on three sets of observations: 

• Increased neuronal firing leads to increased Ab concentration 

• Sustained seizure activity induces robust overexpression of synaptic 

plasticity-related immediate-early genes  

• Both Ab and IEG can induce complement pathway activation 

In this synergistic paradigm, three pathways converge on the same outcome: widespread loss 

of synapses: first, excessive neuronal activity such as recurrent seizures ensure the sustained 

overexpression of activity-dependent immediate early genes such as KCNIP3, Pcdh8 and 

Nptx2, leading to aberrant synaptic pruning and structural degeneration of dendritic spines 

through endocytosis of N-cadherin and potentially other CAM signalling pathways. This trans-

synaptic remodelling subsequently alters the intrinsic neuronal excitability by reducing the 

overall surface area of neurons and decreasing their total membrane capacitance (Šišková et 

al., 2014), rendering the network even more hyperexcitable. Additionally, the activity-driven 

accumulation of amyloid beta and IEG overexpression lead to complement activation and 

phagocytic destruction of synapses by the resident activated glia. Thus, a synergistic positive 

feedback loop emerges between neuronal hyperactivity, amyloid beta accumulation and 

synaptic degeneration. Each of the three elements in this positive feedback loop have been 



 

 

 125 

recently experimentally demonstrated by other research groups (Zhilin Wang et al., 2020; Xiao 

et al., 2021; J. Zhou et al., 2022).  

6.2. Translational implications 
Since epileptiform activity can occur before memory impairments and even before histological 

changes such as white matter atrophy and hippocampal sclerosis, these electrographic 

“biomarkers” can be used in the diagnosis of epileptic AD. Moreover, since epileptiform 

activity contributes towards and predicts faster disease progression and worse clinical 

outcomes, targeting this activity with antiepileptic drugs may help attenuate the potential 

damage it may cause during the progression of the disease.  

The expression of immediate-early genes discussed in this study seems to be an all-or-none 

response, where a “strong enough” signal, namely a long lasting seizure, is required for their 

expression (Christensen et al., 2010). Consequently, the overexpression of IEGs and 

complement activation may serve as additional specific biomarkers that might help delineate 

patients with AD experiencing seizures from those without.  

In conclusion, this work demonstrated the utility of data-driven systems-level investigation of 

complex pathomechanisms and key elements that control them. Future studies involving 

quantification of synaptic density in the dual pathology model would be instrumental in 

experimental validation of our hypothesized synergistic mechanism-model, and provide novel 

substrates for direct pharmacological intervention specific to seizure-prone patients of 

Alzheimer’s Disease.    

6.3. Limitations and concluding remarks  
A complex interaction between numerous internal and external factors such as genomic 

makeup, presence of specific genetic variants, environmental and metabolic factors, injury and 

infection associated immune responses, determine the state and the specific electrical 

properties of the given circuit.  The complexity of this system is difficult to conceptualize, but 

a simpler way to determine the likelihood of the given circuit to sustain a seizure can be 

described in terms of overall excitability of circuits, and the excitatory-to-inhibitory balance. 

Normal neuronal function in the brain depends on the dynamic and extremely precise 

equilibrium between excitatory and inhibitory inputs. Any disruption of this delicate balance 

may result in abnormal electrical activity, resulting in seizures. Any changes in these factors - 
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structural (altered dendritic spine density) or molecular (changes in the number of 

neurotransmitter transporters or receptors) that alter the intrinsic excitability of neurons have 

the potential of changing the excitatory to inhibitory balance, thus rendering the network more 

excitable, resulting in hyperexcitability, or less excitable – providing seizure resistance. It is 

important to delineate the excitability of which neurons (excitatory or inhibitory) is being 

influenced, as this will determine the overall direction the network will be shifting towards 

(more excitatory input or more inhibitory input). Our gene expression studies show 

downregulation of both excitatory and inhibitory synaptic proteins, thereby indicating a total 

loss of synapses, without providing additional information regarding the excitatory or 

inhibitory nature of these lost synapses. Future studies leveraging single-cell spatial 

transcriptomics paired with super-resolution microscopy techniques will be instrumental in 

elucidating which specific neuronal populations are more vulnerable to this synergistic activity-

driven loss of synapses, which could inform the design of therapeutic interventions.  
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